PRI LAV E L

P

4
il

b TR R

G T IR

7 & % 5. ¢ MOST 103-2220-E-007-013-

fF B F 2103+ 057 01 px104=047 30F
HoFHE o AFELETFRIER f (49)

O SERE_ PSS R

FE LB AR Rl A - iE AR R
N0 R B QR L N B
Az 4 EepE g s
FALArmy 4 - Eesam A f ot ErgE R
Bl gd-J i@ g i FEY
Ay 4 -J x| TR

oA R DR RRERE LWL AR

Jee 5

lLaBFEn A4 v oR 83

2. TAFE A3 REHZE 25 flE2gm 7
3. AL | AF A s ety 1 3

o= A R O 104# 072 31 p

LR 3

"EF AR R I F G T o HEH PR
(Uni-processor) g | A2 » = 2 »%it = 8 1% g " T
bez d F s & p,ﬁié‘nﬂé # - %8 Gustafson ‘s law
Baer @ 50 2 B (Many-core) a4 = T 711 0%
iy o FEP e kFRi T P oAl g e B g
F oo 2 fﬁff » 25888 & % (Memory hierarchy)% 3¢ » & 7
N BAERL & A 5+ 7 S EPse it (Private
cache)*’ﬁ‘ % sV E-Bs it (Shared cache) © # 5 sV -Brie
ML EPEL 5 SR B RA S B S BHA 5 BF A
P e R E IFI?EW‘“ o m A % 3 E-Poie R R iR T
FARIEEGFE NG eRMBEERT T SRR
AF R E R PR ,;B’»m;‘ta B do T IR AR R @ﬁ%\]ﬁ
e L1 £ L2 BB BlRM om &R B Rid T E
&*t;mhﬁwzi#@*ijg%H—ﬁ %%J(uwthwd
cache) » FE % * A23% en1 (T F 4L £ (workload) it 43 & € %
F s 2 ieBA N (On—chip memory) » # 2 & &Pk BRR
g B b Inze a4 (off-chip memory) - & % “F3Rzsihil
HF AP PRt (DRAMK:: » 7%’“'»/5@“'3?%%
W85 e r%%ﬁ#”ﬁ’E?(Memory controller)fe P s 73 B~ F oL o
2% ’<a§k£¢§f BN R-Bzs 48 (On—chip cache memory)
Jza B &b AR NE S 3 B~e B8 (Of f-chip DRAM memory) %
N R fLéﬂ RCIE R R SR S o - S A K
ok BLend (T s M F 4R~ JRAFT m(Quality of
service) & & P enoe AP AR H IR D Z B AIRTHIT
. ¥ EREFEMEE DR B PR E FB4 2. L&
T2 R RSP s R 0 3. PR T R R
U'rﬁﬁ.fﬁ‘j\mﬁ ALE A o B oA W G B B EBE R
REAS 4 R - 9 " M PP e R i ~ R AT R F
AR g B O%W1%4@M‘£?”£“2“#M‘ZQL
Frenfedl ok ML o feN Y Lo e Rilp e EHR o

By pePete Al - RGP e R TS ~ TRESE
AR~ S kA MR BRER o

With the advances of VLSI design technology, the
performance of

Uni-processors has reach its limitation. The
increasing power dissipation also becomes a great
burden of the design. Through Gustafson’ s law,
many-cores system can improve the system performance
and reduce energy consumption. For memory hierarchy
design of multi-cores system, cache inside the chip

can be divided into two categories, one is private
cache and the other is shared cache. The main idea of
private cache is to divide the cache into several
partitions, each partition can be accessed by a
specific processor. On the other hand, shared cache
can be accessed by all processors. Under modern
design, private caches are often used as first level
caches which need to access the cache frequently,
such as L1 and L2 caches. Share caches often have
large capacities, such as last level caches. This can
avoid the system from accessing on-chip or off-chip
memory. A multi-core system may have multiple memory
controllers.

Many researches have focused on the topics about on-
chip cache memorys and off-chip memrys and present
their new methods to improve performance, energy
consumption and quality of service---etc. In this
project, we proposed three different new
technologies: 1. Thread-criticality aware dynamic
cache reconfiguration in multi-core system ; 2.
Compaction-free compressed cache for high performance
multi-core system ; 3. Dynamic Data Migration to
Eliminate Bank-level Interference for Data Parallel
Applications in Multicore Systems. The objectives of
these methods are to improve the energy efficiency of
reconfigurable cache by predicting the criticalities
of threads, to design new compaction-free compressed
cache to improve performance and decrease the energy
consumption, to design new dynamic data migration
technique to eliminate memory contention inside the
main memory.

reconfigurable cache ~ compressed cache - data
migration ~ multi-threaded applications ~ multi-cores
system ~ memory contention.

- P EIEL
ERE With the advances of VVLSI design technology, the performance of

Uni-processors has reach its limitation. The increasing power
dissipation also becomes a great burden of the desmgn. hrough
Gustafson’s law, many-cores system can improve the system
ﬁerformance and reduce energy consumption. For memory

ierarchy design of multi-cores system, cache inside the chip can
be divided into two categories, one is private cache and the other
is shared cache. The main idea of private cache is to divide the
cache into several partitions, each partition can be accessed by a
specific processor. On the other hand, shared cache can be
accessed by all processors. Under modern design, private caches
are often used as first level caches which need to access the cache
frequently, such as L1 and L2 caches. Share caches often have
Iar%e capacities, such as last level caches. This can avoid the
system from accessing on-chip or off-chip memory. A multi-core
system may have multiple memory controllers.

Many researches have focused on the topics about On-Chlﬁ cache
memorys and off-chip memrys and present their new methods to
improve performance, energy consumption and quality of
service...etc. In this nroiect 'we nronnsed three differant new
technolonies 1. Thread-criticalitv aware dvnamic cache
reconfiatiration in muilti-core svstem - 2 Comnaction-free
compressed cache for high performance multi-core system ; 3.
Dynamic Data Migration to Eliminate Bank-level
Interference for Data Parallel Applications in Multicore
Systems. The objectives of these methods are to improve the
energy efficiency of reconfigurable cache by predicting the
criticalities of threads, to design new compaction-free

compressed cache to improve performance and decrease the
energy consumption, to design new dynamic data migration
technique to eliminate memory contention inside the main
memory.

< B 4£3 © reconfigurable cache ~ compressed cache ~ data migration ~ multi-
threaded applications ~ multi-cores system ~ memory contention.

R

fif 43

=]

DA F AR BT R PR LT o $E PRI E (Uni-

kel

processor)%"ﬁ | ElAe o 422 vy ¢ S8 T ELEE wﬁg de 27 SO0 4
Ao G B o538 Gustafson's law F 4o iE 5w gl B
(Many-core) #t 43 # = T {7 iv 1 (T ey o ;ﬁ S O A I ES i
F oo Al4La F ok o p oA Jf* = —H#"f 3% r‘é,%f' }éi & (Memory
hlerarchy)‘“ Bl %‘ '}—{— WHEHLE A L SR

W(Prlvate cache)®z » % ;% }4 B’&’ & %4 (Shared cache) o FF N

R EME S ;‘&V R s S E BB RA S FBR OB

= d «‘}%Ifz@/— T 3B iTombsb 3N LBl T‘éf“'ﬁ'lﬁ‘éﬁ%ﬁ e
B] MM ARE T ff SR R F
EE PR]?E"m%ﬂ) m]{zrbt’)f&,_ﬁ?ﬁg@? @ﬁﬂ Flen L1 & L2
BB oAl o A A F NP REd T B Y s F dF o i
¥ b (s B B-Pio Bt b (Last level cache) o7& - * 4258 en
1 i® F" ‘}'l‘ fl‘ (Workload) At 96 4‘:.‘ ZE_ [I? l’f-—ElB = fﬁ’?ﬁ &S (On-chlp
memory) > * % & 3P R e chdH P bR pag (off-chip
memory) fo &b IRe AR K B LS 5 P b i (DRAM)
B A% Egﬂb %38 5 B s B4 % (Memory controller)
P\"'l%f‘ FERFA

E JF*% A48 P B2z [18 (On-chip cache memory) 2 2
DGR SRS B’»fa'rﬁ%ﬁ(Oﬁ-chip DRAM memory) it4p A~ 3 >
BT R e RAE R RN R AT Pk B e
’3;‘ NESER I SIS 2 §T(Quality of service)... % & p eho AP A
TBFERDZ BAIHEMN L FERFHMEE S f'ﬂ&«}’—B*
iﬁ’f FH 02 LB 2 FTHBRESN P REBI 3 SR
BTRCEREEREGROF #’%5"'#‘# e S
B p-Pce iR] kB - b R IR Pese AR AR R~ K3
Ui ‘\mp LR Sg B o R AR R 4 d M?%-iféﬁ"l 2 BLY SN
ESaris #”’#J%?tﬁvi"fé ML AP f ARy e RE R

_.
She

' 2

f‘l‘
L Lu=E)
.
Yo

BRI R BRI S TR 5 R R A5

S P ks el AR R o

B e TR T SN

(1) Architectural Full System Simulator (% - #) :
A0 28 5 3 & GEMS {r Simics [k st > &4 £ Wide I/O DRAM memory % #
T o e R A % K3 (Memory hierarchy design)friz gt 41 % (DRAM
controller) it 4p B 4™ 3 o
(2) Memory Hierarchy Design (% - ~ = ~ = #):
AP REHIPCT ST 2 A7 R o R E b RTH A -
IR AIFTHEM- T ERFEMEEE R G R ERINE FBY
B AL P e RS A C A 2E P KR OB R L o B AIRTHNY
A fE 2 TRIR] S o T8 P 7 4 enkf 4242 (Thread criticality) » & ffl;y;z F
b 444 4 4HE-B~2e fh 48 Cache line size ¥2 Cache way ##» i 33 &5 o B]— 2 &
7 4+ %+ multi-threaded applications 2 p| & & thread = criticality £ £ |+ -

-Eé 100
£
i
g 80t -
2
2
E 60 |- -
2 .]
2 alf :-' 1
= i
A f
5 1T
B o2} i -
@) / /
o ..
§F AR
=1
& 2 £ B B = 5 x E @
HEEEEEEERERER
d QB £ 8 F E X 2 8 & 8 °
H & E w o = ; s =
- 2 E 2 g &
u @ L -g 5 c 3
& e &

Bl - PARSEC benchmarks criticality # £ 4+
1453 7 P 3 I thread encriticality » 2% {925 3 e fi B A #5417 12 3% non-
critical thread <772 3 i * |ecachememory &g “ 425t » ¥ p b E# 5if &
cache line size % critical thread - B] = % s 4% D enid 4] o 417 € 5 - A4
K icdk data locality & % i34 & cache line size PFi¢ * » 4@ =

/
r

L1/L2_miss _count L1A2 acc_miss
c1.c4 _count crc4

Criticality
C1:C4

_’ L1% L1% l L1% ” L1$

g
1 1

Transfer data from memory

Cache line-size
adjustment

Line-size
setting e

Timer=0

Cache capacity
adjustment

| /
L18&L2cache /
configurations

DENES SR PR F e St § 8- 38

Maxi Minimum
Ii::?i;er:n line-size
) 16B
(64B) (168)
31 12 5 4 3 0
Tag address] Index address [Line offset |
[Locality
Tag LB UB
Index: 0
1
127 T T]
Cache hit ? g
-y _vﬂ\ l
Update lower bound ? (ﬁ/‘ ¥ J
Update upper bound ? i >}4

Bl= # iu A 48 % o4k memory access bound

AR AR LBR 2 THBRES P RE B

?%»’@‘{ﬁ;\ PPis iRt 5 P i — 3 2k 4e Last level cache ¢ capacity
1 jE o e ﬁjrf\‘—fi..nﬁlf’? ;ﬁ ST G SRS Bl T o B ER
BB ® i 7 F e x] 7 —ﬁ@ﬁ?%%ﬁﬁgﬁﬂﬂm
fragmentation R 3L F & o “’r - SRRl g RY
compaction iz B > /2 4c Bl I #7771 °

70

libquantum
60 |

S P
40 |

J‘m

30 »

an

|

cnctulsADM]

T
astar
bwaves

b, o

|f‘“:“‘1 Iy ﬂw’t ‘m;wr“] M’“""]HH\ ';. ‘.,I

‘f‘ vl

T

- :..,,\ﬂr,‘r_-.mr‘,“my,ml*.h(mrﬁ, T"F‘,,vf[_q,] AT P‘ﬂ - ..r.,ﬁ‘-\'} ATy

't

: Il'g |~
7ed ‘| W
20 fw\ : ‘J [

‘ lbm

leslie3d

|
o i

Y “.u

W
.

Average Compressed Size (Bytes)

JL.JJ»A#_{A .I.»JL_J.L_HLMAJ

10

ot v T Y

LH.

J qh‘u i U.};q,.buw‘ L.,

0
0et00 1e+08 2e+08 3e+08 4e+08 5et+08 6e+08 7e+08 B8et08 9e+08 let09

Times (Cycles)

Bz SPEC CPU 2006 ¥ #%3% T {7

Step Next Ref. Data size

77 ¢ data compression size % i*

Tag Area

Data Area

Logical 4-way LRU

Physical 1-way

Segment 0 Segment 1 Segment 2 Segment 3

e MRU LRU . : |
c4 cao][cal v | 011 30 1l c20 i i|
1 e [alarer] e [oe][en][ad]l]
Y L
@ size (1) (1) (1) Miss!
MRU LRU Segment 0 Segment | Segment 2 Segment 3
2 v i H H 1
< [ci]e] T] way 0 |i CL0 i i c20 i i
size (1) (1) b
) N
3 Compaction
MRU LRU
s G E .
size (1) (1)
MRU LRU Segment 0 Segment 1 Segment 2 Segment 3
—. T 1 1
s Glalal] oo ool) o]

size () (O (D)

Bl 7 Compressed Cache ® Compaction #7i# *

R
logic ~ collapsmg logic £ insertion logic filter logic * 1#’“
T ERG P ETHFL > collapsing logicd 28 P EFA RH L H 5
B wH o @ Insertion logic P 5 ¥ @ F 74 A 483 ko] H fim;t L F B
Hr it o

7 #73k 3+ hr compaction-free architecture o 73 e~ % filter
F R

Tag Area Data Area
64 segments

L For
¢ . P—
0 1 15 A4 A 4
[free bit ofofolofJoloJol1]1 ool
tag ID 0000 0001 1111 rag 1D ¢[—{ 0000 [1111 0000 | o011 | oom1 | 1111 | ov0a mm |
ves
clc|c|clc|cle cle| fE
0(10({2-1|30|31[1-1 1 1-3 g8
[T[] E
filter logic
Cache Set Index - =
* 64
T T (Valid segments
bit vector)
|LRL' State ‘ Pcuulssious|(‘s[ams‘ Address Tag I J' J' l l %
y ¥
4 bits 3 bits 1 bits i i T+ X X X
(MOESD) collapsing logic le insertion logic
Contiguous data * Incoming Dataf

Reference Address

| Address Tag | Index ‘Offsel|

Bl The overall architecture of our compaction-free compressed cache

LR AIRHRZ DS REHT R R RE R TR R
TEIREFET FAS? N R F A RARAT 7 A ok & Stencil
applications » ¥4+ F fleig * LA < PP RMa FRDFE B2 RHE

B R P g # 2 si R % (memory banks conflicts) R T oy
SRR L __,Ef]{é FazefMlieRBEGROfEA 32V 0 5 BIITE kit a4
RPN 3 E AR (page allocation) % f#;4-[1] » ¥ % j&z% r’éﬁ*"#’#l e R 5N
(memory controller scheduling) * f#;4-[2] » & &4 ¥ 3% K seezseiutiz il & -
Az & 1Tk f24-F 42 » #&_page migration iimlpk/z‘ [B]c #m » % 54T 5
s jﬁ = mﬁi} ,:1 —14(‘ ?"'k'l f”fi}\‘ » kX H - K&ij’% P?' B ‘} ﬂ',. @rﬁl fgﬁi
NpEE, d AR ﬁq—?;}ié_ﬁ. BRITETE R > b iR 4#& m;_:rgi - giﬁ
EEA e AP I H RSB ED L e R T Y > &S
MRt RE TR #&4 & BLITRY o

B RERCREGR B A > AP F IR - 4 data parallel applications sz
'r’é’iﬁ Pt P - 48 update-and-reuse sRCES o T AT TR G {4 i

F € LAl — B thread 3§ 2~ 3 > Bl- % % #4 data-parallel applications memory
access {7 5 ® » update-and-reuse pages 7 ¢ +t] ©

Ratio of Update-and-reuse Pages
100% g - o H - . — - m

80%
60%
40%
20%

0%
X o © & Q:ss R \Q{" ,\(\'5& ,b4°<5
o » kS & S

N g

g\\é\

Update-and-reuse pages W Not update-and-reuse pages

Bl = Update-and-reuse Pages Ratio in Data-parallel Multi-threaded Applications

I-LJ?IFL;\,,FB#%»{!” ,“p”*‘n"#x%;m:}iﬁtr’ AR A G RIT ¥ Ry B F il TS
TR A 4o B N BBl A T e

~

Virtual Pages Physical Frames Virtual Pages Physical Frames
DRAM Bank 0 DRAM Bank 0
Memory Bank_ll | Memory Bans_l_l |
Bank 2 Frame A Bank 2 Frame A
Bank 3 Banli..]_
J J
| ‘ [| e — Reserved
| —T | =T FrameB
L L
(a) Conventional memory page (b) Proposed memory page

mapping diagram mapping diagram

page offset

Physical Address 18 17 —
P19 0r » | h]
e bie row | bank | column ;TJ.LA
index | offser
address a | 100000000000000 0|1 000001 | 210k
offset
block
address
Block Decoder
g =1
o 1] :
& 2
: [T T=T11
gl L]
1817
block
address ta | row | /|| column L
offset

B4 ceRMEEFF s

SR EREAHR
A Z A R ORIRTITA P TP se R TR A U el
BT E A S F & R L dreg s BEm 4 o

(a) pIFTHMF- ¥ ERFHEMEL R GEoRYE K
1 & & 5 private L1 cache §r shared L2 cache 7 capacity # B ji -

Private L1 cache 7 & 34 B $Librdy 4] i A2 Bl 4o B - #77 - 7 L 2] %7 thread
criticality §_% +* £ + ¢ thread criticality x 0.8 > > f&&r{ﬁﬂé@ifagéﬁtiﬁ'f =
low criticality group # 4% %5 cache line size - & - R &2 +* & miss count £
average miss count =% £ % i - # ;4-z_cache line size o

— = T =2
Expand Shrink
decision decision

Thread_criticality =
0.8 * Max_criticality

No Yes Mlnlmqm {000, 001)
capacity
(32KB)
Low criticality High criticality
group group
Shrink cache Medlu_m
capacity Miss_count > capacity {010, 011}
Avg. miss_count
No Yes
Low memory High memory
requirement requirement Maximum
capacity {100, 101}
Shrink cache Expand cache (128KB)
capacity capacity
(a) The decision for cache capacity (b) Cache capacity state-

transition diagram

B+ Private L1 cache # & B-B~ic iRt £ Fir 4| ik g5

Shared L2 cache 7% € 33 B HL i A2 B 4o B+ — #7577 o #7F 1 cores ¥ ; RéE B
¥ o criticality Welght 223% core ;&2 & shrink 2 #_expand i 0 £ % 4K
7,12\» /i‘m,,xa‘a‘/'{:" /“IIJ}—%'&&%%C 7‘1'\/};“ :EL °

1.0

P

0.6
10

B+ - Shared L2 cache # fi P-Bric{ffl € i) itk

1.6
0.8
4 o
[0}
2 p e
353
S92 3 0.6 14
8 (e @
g D

(b) RIATEIEZ 0 ABRR 2 TR P s RS

& ¥+ compaction #7i# = ¢ performance overhead > 2 P J1 ¢ 7 = &
circuits A7 7 4 &k H 4c 2z i o 4 w5 filter logic ~ selection logic ~ #?
collapsing logic -

i# (T8 4 5 cache hit (B =)£ cache miss (B] -+ =)= o % cache hit =»

T s tag ID ¢ Jwﬁteb g 3] filter logic @ - filter logic ¢ #-¥ /&
$- tag ID enff =3m3k 5 10 £ % collapsing logic ¢ -t f =5 1 enifli
53 5 FoR 4 2 - Cache miss shfmp] £ 4 d filter logic + $#73 free
segment cHix ¥ #X {5 i@ % insertion logic - insertion logic £ #-jEZs R H K HF

v‘

/1——

FL3r B 3] & segment Z_ p o

Data Area
64 segments

u : SIme >
. A, SN SRR : pew o 2, -
ﬁ‘ff’”—f r {0 1] 0 0 o o (1] 1 1 0 0 1
tag ID(1111) rag 1D - 0090 | ILLE| 0000 | 0011 | 0011 | 1111 |00 |, (i

from tag area clelelelelele clel

2.0|1-0{2-1|30|31(1-1)22 1-2]| 1-3
L =1 S |
E filter logic
1 (| (Valid ey
it vestor
J» l v

» collapsing logic insertion logic
Before *
lelele | | (L lele Incoming Data
|20 I-l] 21 ‘ll ‘1 |l| 1-2(1-3

A ¢ LA
.
lele|c|e
After | 1u|:|‘|:;1-3 ‘

Contiguous data L

- = A cache hit example in our new cache design

Jirer logic

i =
A g
[rp—

collpaing logic ¥ mzartion logic

llﬂlﬂﬂ-ll’.l*. P cle]e
] w12z |aa

,,_,Fmr—‘r?

| mewe |S|SLSE] ||| |]

B - = A cache miss example in our new cache design

i
2

I-J-|l-!|

4 I.14 J:I

(©) AIFHEIFZ : SREHT RS ERMBRE TR ATHE 24

® TE LR ket

d A EH Rk Rk * 5 K Time frame chz BF <) > #F 0 FH
R 237 % X > APBerivE kg AhfeREM TR
€ 4= =%t free-page list ¥ ",f 7oA 2R R a0 bits 2 ¢k e bits JF’K— ke
I p Wi+ g)% T (Reserved pages) o ¥ M-zt T3l @b a4l

PaE - e R IFR 24

® olpELdlE ek

REEFIEF LRI TR SRR FE TR L2 2 - B DA
WP ER[EEFTN T F- BAMPE&E A esF- o0 31 0§

MWiehon Shhe 52 KEHRTAMP & - AN & LT e

NEFEP APl Rl o) A IEE kA AN SR MR
TEBRESONFE AT APTUNELSER - P FE O B RPN
FHIHE W RGN FE AR o F R - KPR (AT ¢ RR
BreRlOk e RERALE R - P RBE T P KRR DD R
(CoreID) » APV #-FTHBIHEE BT REFTA FE 6 ¢ > & At
R R P B AP R PR R S KA B SR g
e BB hEL o d W E B FHEAGEROTRAN Eb b L EEHE A
AR LATE RS A H BT R e RE Y 0 2R T MR
B#rR e 4 oo

pan k2> =/
DS ‘..zgatl;'i’@-‘f\a[fn

(1) Memory Hierarchy Design (% - ~ = ~

FER%s 5257 FAATHIDS % BT .

(a) IRTH T

Bl w BT A e i gt b 2 et g

B0 16%4% i o vt TCaT[4]% > 8%4< it

ZE):

D A ERF ML e R F R

{ é\? ‘»}'{;‘}é‘:'l"%‘f‘;; ° (LL‘ DCCR[?)]

Fregmine

1.4
Baseine memmm DCCRIT = TCalld] o us 00— |
~ 12 | Ir_ |
5 'r m 1 ih I} }
W ogl il T 1 H F i
J: i B G (A N
§ 06 N Hi ﬂ L | i N
i . H ! ! { ; |
5§ 04T EEE I il | 'H]
et BB R E it i
0 i il K iij i.| i.[l ||| il i | [t
@ € = - . - £ i
b4 5 a & S g g =]
§ = ¢ 5 x = s & <
5 ¥ § u« = 2
g ‘3 & £ L
&)]
8 3
— in

I —

(b) Al7H

L —

16%»x s, + e = -

Fluid anim ate

Bl e AP R

L=
Rt

1 28

LR 2 FRR S B e RS
BT 5P 2 5 B (TP g % o 19 Baseline #p 0t §

MBI 2

% ;% VSC[6].£2 DCC[7].4p +*

2
=4

4 5%% 3%

'Original £===a = VSC[1] &==a ' DCC[?] mumm

T T
Qurs E==3

T
14
1.3
E 12
3
8 1.1+
]
£
s 1t
09
08

LR

(c) lIFTH =

SN EEETEEEESERERT

mix1 mix2 mix3 mixd mix5 mix6 mix7 mix8 mix9 mix10 mix11 mix12 mix13 Avg.

Performance results by using different cache architectures

FREFTRCERMEREGFR DT FF ZB

N Bre B R T 5o iFiE A

P engi Al B35 fe e R R PR ¥ eeh 2 k4415 Multi-threaded stencil
applications - @]~ 7 &7 & 4] * Pluto p % & 4 Heat 3D 4% ;' ¢ Task
dynamic scheduling (diamond-shape) T {7 4%.;% 12 2 PARSEC benchmarks
R A% v gk o B¢ OSC.[1] 5 OS page coloring =7~ j » PRAM.[2] &
Multi-threaded memory controller scheduling 7= /2 - B4 ¥ 2 —g BN Y
B Z T OSCAp v 3 »ade = 0 4 7205 < X 13.2% 0 @ &2 PRAM.jp vt
Pl 7 9%

Execution Time

1.4
1.2
1
0.8 H Baseline
06 H OSC.
0.4
B PRAM.
0.2
0 B OSC.+0urs
’&b /\Q& /\Q& ’?,9@ L Q:z} A\Qc’ 52 &
& P F Y S &0
< G
N RS
\\\)

Bt T & Epma i

T~

\\\?{r

SATE

[1] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, C. Wu, “A Software Memory Partition Approach for
Eliminating Bank-level Interference in MultiCore Systems,” in Proc. of the 21st international conference on
Parallel architectures and compilation techniques, PACT 12, 2012, pp. 367-376.

[2] O. Mutlu, T. Moscibroda, “Parallelism-Aware Batch Scheduling : Enhancing both Performance and

Fairness of Shared DRAM Systems,” in Proc. Of the 35th Annual International Symposium on Computer
Architecture, ISCAO08, 2012, pp. 63-74.

[3] M. Awasthi, D. W. Nellans, K. Sundan, R. Balasupramonian, A. Davis, “Handling the Problems and
Opportunities Posed by Multiple Memory Controllers,” in Proc. of the 19st international conference on Parallel
architectures and compilation techniques, PACT’10, 2010, pp. 319-330.

[4] Y.-T. Chen, J. Cong, H. Huang, B. Liu, C. Liu, M. Potkonjak, and G. Reinman, “Dynamically
Reconfigurable Hybrid Cache: An Energy Efficient Last-level Cache Design,” in Proc. Design, Automation,
and Test in Europe, DATE’12, 2012, pp. 45-50.

[5] A. Gordon-Ross, F. Vahid, and N. Dutt, “AutomAtic Tuning of Two Level Caches to Embedded
Applications,” in Proc. Design, Automation, and Test in Europe, DATE’04, 2004, pp. 208 — 213.

[6] A. R. Alameldeen and D. A.Wood, “Adaptive Cache Compression for High-performance Processors,” in
Proc. the 31st Annual International Symposium on Computer Architecture (ISCA), 2004, pp. 212-223.

[7] S. Sardashti and D. A. Wood, “Decoupled Compressed Cache: Exploiting spatial Locality for Energy-
optimized Compressed Cache,” in Proc. The 46th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2013, pp. 62-73

PHEIA LA T P ENAREERFE R TRL

P & 7 @
34 %y, | MOST 103—2220—E—007—013—
s SRR I CT ST RN ARG E R -F A TR Y
\:’%L"jﬁi‘ '] T 4y, ki 2o B R & 2R A 2p 2L
e L4 *('\" S SuZ pc'rﬁ'gﬁ}é} & TE *#V/L: v (3/3)
IRA R T PRI 1 o o W oy
'&:J—_:\;' - 'ﬁ%iﬁ? z E%‘ﬁ%;.].g] /)3 § P‘ “g%l 7?5? N ?{:}‘)’:
y 103+ 05% 29p 2 L
= E A = id"' @ F & 'f,_-%‘—l"
AAFEE 032065 0gp |HPFH | FEE
(¥ ©)2014 DAC ¢ &
b A
(% <) Design Automation Conference 2014
(* %)
® R AL
(# =) Time-Multiplexed Dual Role TSV for Fault Tolerance at Module Level
- 0 2‘& g Pi« —’1—-3@

AEXE®RF D BP e x- BP i & DAC € & hwork in progress session ¥
FEFL A F NP 1R A AR 3D IC ¢ > # module Ievel » o ife 1]
test TSV % ¥ iz fault tolerance TSV & ¢ o iz i#; frm«H gy TSV eha ff %
routing en& & o % = B P ch i KA ytf'ﬁ%u« @& 4 DAC m»gﬁi’!'%%ﬁ o % p
Ltk PR RF AR AR R I HHE i o

NER SN

DAC ¢ %> EDAAER b < chg k> 22 R hF 48 ¢ $4c o 57 2 EDAF
A REARFET ekt §3K o

“Hhhe v AR

i

r 2

J~4

VT EAREHA NG

= o~ H o

Time-Multiplexed Dual Role TSV for Fault Tolerance at
Module Level

Abstract

In order to increase the yield of 3-D IC, fault-tolerance technique to recover failed TSV is essential. In
this paper, an architecture of TSV recovery by using test elevator TSV is proposed. With the architec-
ture, no dedicated redundant TSV is required to be inserted in advance. Hence, no extra area incurs.
TSV assignment algorithm based on min-cost maximum-flow is proposed taking into consideration the
locations of functional TSV as well as test TSV, so that the total Half-Perimeter Wire Length (HPWL)
of a 3-D IC design is effectively reduced. Experimental results show that the total wirelength of 3-D IC

testing is improved by 20% in average compared to that of spare TSV approach.

1 Introduction

Global interconnection has become a major bottleneck of performance and power for System on Chip
(SoC) in single-chip integration. To tackle this problem, three-dimension Integrated Circuit (3-D IC)
provides shorter interconnection by using Through-Silicon-Vias (TSVs) linking signals among multiple
stacked dies [1].

TSV is a critical component in 3-D IC. Just like any other component, fabrication and bonding of
TSV may fail [2,3]. A faulty TSV can be detrimental to the yield. To improve the yield, some recovery
mechanism for faulty TSV is essential. To increase the yield of 3-D IC, a lot of methods to recover
faulty TSV were proposed.

Among others, a simple but effective solution is to add redundant TSVs for faulty TSVs. The first
shifting structure to shift a signal going through faulty TSV to redundant TSV was proposed by Hsieh
et al. [10]. Then, following the same idea proposed by Hsieh, a built-in-self-repair (BISR) circuit for
recovering faulty TSV in 3-D Random Access Memory using global redundant TSVs was proposed by
Wu et al [7]. Xie et al. [?] introduce a yield-aware TSV defect searching and replacing strategy with
built-in-self-test (BIST) design. Later on, Ye and Chakrabarty proposed spreading spare TSVs for
faulty TSVs in considering physical locations [9]. Jiang et al. [?] propose a TSV repairing architecture
to enhance the ability of recovering faulty TSV. Although these TSV recovery methods successfully
recover faulty TSVs, they all need extra area to accommodate spare or redundant TSVs. Besides
these recovery techniques using extra TSVs, TSV recovery without extra area was introduced by using
sharing signal wires of pre-bond clock tree, reconfigurable routing hardware and fault-tolerant unit
(TFU) [?,6,8]. However, these methods can be applied only to TSVs of clock tree and network-on-chip
in 3-D IC.

On the other hand, 3-D IC testing has also been an active research area. Testing of SoC design in
3-D IC has its unique technical features that are different from testing in 2-D SoC design. Testing SoC
design in 3-D includes pre-bond and post-bond testings where the former tests individual die before
stacking and the latter tests the whole circuit after stacking. Lewis et al., proposed the first paper
dedicated to testability of pre-bond 3-D IC [4]. Chi et al., presented an architecture and implementation
for Design-for-Test (DfT) method for 2.5-D and 3-D pre- and post-bond testing [5,16]. Marinissen et
al., presented a 3-D DfT architecture for 3-D-SICs that allows pre-bond die testing and post-bond

Tablel—Comparison-of the charateris ! niques
Recovery Scheme Dedicated TSV Design Type
redundant TSV [?,10] yes general
spare TSV [?,9] yes general
redundant TSV [7] yes memory
clock wires for pre-bond test [?,§] no clock tree
reconfigurable routing hardware [6] no Network-on-Chip
stacking testing. our test and redundant TSV no general

In the above mentioned work related to testing 3-D IC, all DfT architectures are based on modular
test approach. That is, its die-level and embedded core wrappers utilize IEEE STD 1500 [19]. In these
test architectures, there are TSVs regarded as test elevator TSVs dedicated to transport test control
and data signal up and down among dies during post-bond test. These test T'SVs are used to transport
test data only during post-pond testing and are not used during normal mode [11]. This important
feature makes these test elevator T'SVsredundant TSVs in normal mode. That is, by time-multiplexing,
these TSVs have dual roles: as a test elevator TSV in scan mode and as a redundant TSV in normal
mode.

In this paper, we propose a new architecture to recover faulty TSV by using test elevator TSV.
Table 1 summarizes different TSV recovery techniques. In this table, we can see that the first three
methods require extra area for redundant TSV while the last three methods do not need dedicated
TSVs for recovering. However, the fourth can only be applied to clock signal and the fifth only to NoC.
Our method is the only technique that uses no dedicated TSV and can be applied to any TSV
signal.

The rest of this paper is organized as follows. In Sections 2 and 3, we introduce our architecture
for TSV recovery and problem definition. Section 4 presents our algorithm for TSV recovery using test
elevator TSV. Section 5 shows our experimental results. Finally, the conclusion of this paper is given

in Section 6.

2 Preliminary

In this section, the architecture for TSV recovery and the fault model are described in Section 2.1.

Then, in Section 2.2, TSV-block for TSV placement is presented.

Figure 1: Architecture of TSV recovery (a) normal mode and (b) recovery mode

Figure 2: 3-D IC design with TSV-blocks

2.1 Review on Architecture for TSV Recovery

The architecture of TSV recovery using redundant TSV is adopted [10] and shown in Figure 1(a). For
each TSV, two configuration MUXs are added at two ends to shift the signal to neighboring TSV when
one TSV fails. The TSVs are connected as a chain where the redundant TSV is placed at the end of
the chain. When no TSV fails, all signals are transferred by original TSVs. When a TSV fails, the
signal of the failed TSV needs to be shifted. This in term causes all signals between the failed TSV and
the redundant TSV to be shifted. For example, let T'SV; fail as shown in Figure 1(b). The selection
inputs of configuration MUXs for T'SV;,, T'SV3, and T'SV, are set to 1. The signal paths after shifting
are shown in Figure 1(b).

The recovery rate for a failed TSVs is analyzed based on probabilistic models. According to the
result presented in Hiesh’s work [10], assuming that single-fault model is used and the failure rate of a
single TSV ranges between 10~* to 1075, the recovery rate is 90% when the number of TSVs in a chain
is no greater than 50, and 95% when the number of TSVs in a chain is no greater than 25.

We will adopt this architecture to recover failed TSV in this paper. In the following, the term
TSV-chain will be used to refer to the structure of this redundant TSV architecture.

2.2 3-D IC Design with TSV-blocks

TSVs are not recommended to be placed arbitrarily on a plane. From the aspect of manufacturing,
a regular placement of TSVs improves the exposure quality of the lithographic process and therefore
improves the yield. Because of manufacturing and physical design issues, TSVs are suggested to form
a regular placement in TSV-blocks. This 3-D IC design with TSV-blocks provides several beneficial
properties [10,17]. In real designs, TSV-blocks can be determined in floorplan stage. Inside each TSV
block, TSVs can then be arranged in a grid-based structure to satisfy the pitch constraint. Moreover,
TSV recovery architecture can be easily implemented by using shifted TSV-chain structure in 3-D IC
design with TSV-blocks. Figure 2 shows fault-tolerant TSV-chains are constructed in 3-D IC with

TSV-blocks where grey and black circles represent TSVs and redundant TSVs, respectively.

3 Test Architecture and Problem Definition
3.1 Test Architecture in 3-D IC

A conceptual overview of 3-D IC test architecture is shown in Figure 3. In this stacking integrated
circuit, during 3-D post-bond scan mode, the test data of active devices on different dies are transported
by using test elevator TSVs. In this figure, the grey arrows between dies represent test elevator TSV
constructing test data paths in a 3-D IC DT architecture where external I/Os at the bottom die
are wrapped by IEEE 1149.1 Boundary Scan and intra-die is implemented based on IEEE 1500 core
wrappers and TAMs (test access mechanisms). For 3-D IC test architecture with IEEE 1500 standard,
each die has its own user-defined TAMs to support a parallel scan mode. Then, each core can have
its own TAM-in/out ports consisting of a number of data and control lines for parallel test operations.
Each core wrapper has a wrapper instruction register (WIR), which is used to store the instruction to
be executed in its corresponding core. Furthermore, there are internal scan-chains for existing intra-die
DST in each die.

For SoC design, the IEEE 1500 standard provides a scalable architecture to test the embedded cores
and interconnects between cores. The external test for testing core-to-core interconnects is prior to
internal test in cores. In external testing, special instructions allow testing of core-to-core interconnects.
After external testing, the test data can be loaded into WBRs (wrapper boundary registers) and then
send to function input and internal scan-chain of corresponding core. Finally, functional test in core
can be performed.

Similar to SoC design, IEEE 1500 standard can be applied to external and internal test at core-level
in 3-D DfT architect (under discussion for standard). One difference is that in 3-D IC design, testing of
TSV is usually performed before testing the whole design [7,9,12,13,20]. Before external and internal

test of core-level design, whether a TSV is faulty is known.

3.2 TSV Redundancy Using Test Elevator TSV and MUX Configuration

Based on T'SV-blocks design method with TSV redundancy and 3-D IC DfT architecture, our proposed
architecture will use test elevator TSV as redundant TSV. A test elevator TSV acting as a redundant
TSV in a TSV-chain is shown in Figure 4. In order to play two roles, the circuit of test elevator TSV
(redundant TSV) is modified. A MUX, denoted as DfT" MUX, is connected to source end and a

Figure 3: An overview of 3-D IC test architecture

Figure 4: Architecture of TSV recovery with test elevator TSV (a) normal mode without faulty TSV,
(b) normal mode with faulty TSV, and (c) scan mode to transfer test data

de-MUX, denoted as DfT de-MUX, is connected to the destination end. During normal mode, the
selection inputs of DfT MUX and DfT de-MUX are configured to 1 and the TSV is a redundant TSV,
while during transferring test data of scan mode, the selection inputs of DfT" MUX and DfT de-MUX
are configured to 0 and the TSV is a test elevator TSV.

In normal mode, since test elevator T'SVs do not transport test data, test TSVs can be regarded as
redundant TSVs. These redundant TSVs can be used to recover failed TSV. If there is no faulty TSV
in the TSV-chain, the data is transmitted as shown in bold line of Figure 4(a). If there is a faulty TSV
in the TSV-chain, the last input (i.e., Iny in Figure 4(b)) will be shifted passing through redundant
TSV as shown in bold line of Figure 4(b).

In scan mode, when the TSV is used as a test elevator TSV to transfer test data, DfT MUX and
DfT de-MUX are re-configured to 0 as shown in Figure 4(c).

As to test flow, Figure 5 shows our proposed method of testing in 3-D IC. Suppose there is no faulty
TSV. In testing phase, test access is through external pins of the bottom die. Before transferring test
data in die wrapper, the selection inputs of DfT MUXs and DfT de-MUX is configured to 0. Next,
the test data is kept transmitted through test elevator T'SVs in 3D-IC till all test data arrives their
designated die. Then, test data is transferred to each core and run. Finally, test response is sent out
for observation.

Suppose there is a faulty TSV on a TSV-chain, which can be found during TSV testing. Then, we
need to re-configure the DfT" MUX and DfT de-MUX first as shown in grey box. First, before running
the test data, DfT" MUX and DfT de-MUX are re-configured to 1 acting as a redundant TSV. Next,
before sending the test response to bottom die, DfT" MUX and DfT de-MUX are re-configured back to
0. Note that if no failed TSV is found, the second and the third configuring steps for DfT" MUX and
DfT de-MUX, i.e., grey boxes are removed in the flow.

Figure 5: Flow of testing in 3-D IC

3.3 Problem Formulation

Given a set of placed module blocks and a set of placed TSV blocks. Our object is to assign inter-die

interconnections including function signals (functional TSVs) and test signals (test elevator TSVs) to

TSV blocks so that
e the total wirelength of test nets are minimized
under the constraints that
e the total wirelength of functional nets remains the same as that without test nets, and

e there is sufficient test elevator TSV in each TSV block. This test TSV will also act as redundant
TSV to recover the failed TSV in this TSV-block.

4 Algorithm

A floorplanning tool that allocates TSV-blocks to all inter-tier signals and places all blocks at the same
time [18] is adopted in our design flow. This floorplanning tool outputs the locations of functional
modules and TSV-blocks, and capacities of TSV-blocks. Given the output of the floorplanning tool,
TSV assignment is to assign each TSV (functional TSV and test elevator TSV) to a TSV-block. In this
section, first, that the number of redundant TSVs required in TSV-block is estimated and allocated
in floorplanning stage is described in Section 4.1. Next, we define the cost function for an assignment
of a TSV to a TSV-block in Section 4.2. Then, in Section 4.3, we model the assignment problem as a
network flow optimization problem. Before we present the algorithm, for ease of explanation, a list of

notations is defined in Table 2.

4.1 Estimation and Allocation of Required Redundant/Test TSVs

To guarantee that there are enough test elevator T'SVs to ensure a given recovery rate for each TSV-
block, the required number of redundant TSVs (i.e., test elevator T'SV) required in a TSV-block, tb;,
needs to be calculated and allocated. Let N be the maximum number of functional TSVs allowed to

be chained in a TSV-block, tb;, for a given recovery rate.

_ cap(tby)
oty = 2! 0

13 AT . x

e; Eﬁe i—%h et

tey the k-th net for 3-D IC testing
tsv(e;) the TSV used for e;

tsv(ter) the TSV used for te

tb; the j-th TSV-bloc

where cap(tb;), and N represent=t aced in a TSV-block, tb;, and

the maximum number of functional TSVs in the same TSV-chain mentioned in Section 2.1 and 2.2,
respectively. Therefore, for each TSV-block has its number of required redundant TSVs, a(tb;). Note
that, if there are not enough test elevator T'SVs to satisty «(tb;) redundant TSVs for a TSV-block, tb;,
the extra redundant TSVs are needed to be assigned in the T'SV-block, tb;, until the desired recovery

rate are achieved.

4.2 Definition of Cost Function

In general, the priority of functional net is higher than that of test net because functional net affects
circuit performance. However, a function TSV assignment may lead a test net to make a long detour if
function TSV assignment does not consider the distribution of test nets. For example, suppose that a
functional TSV can be assigned to two TSV-blocks, tb, and tb, where both have only one TSV capacity
and a test net has only one tb, inside its bounding box. In this case, if the functional TSV is assigned
to tb,, then the test net can not be assigned inside the bounding box of the net. Hence, a detour is
required and the wirelength is increased. Therefore, assignment of functional TSV should take into
consideration the distribution of test nets.

In order to take into consideration the distribution of test nets, we define a cost function for a

functional TSV, tsv(e;), assigned to a TSV-block, tb;, as

3 det t
cost(tsv(e;), thj) = ﬂ + ¥ detour (tey)
cap(tb;) tereT'N detour oz

(2)
where T'N represents the set of test nets whose bounding box intersect the the center of the TSV-block,
tbj. #tn represents the size of TN, cap(tb;) represents the number of TSVs that can be placed in the
TSV-block, tb;. detour(tey) represents the shortest detour wirelength of test net, tey, and detour;,q,
represents max{detour(tey,), for all test nets}.

Note that, for a functional TSV to be assigned, we consider only those TSV-blocks that are inside
the bounding box of its net. As such in a TSV-block, the wirelength estimated by bounding box of the

net will not change. Therefore, there is no term in the cost function defined in Equation (1) to reflect
the wirelength of the functional net.

Next, we define the cost of assigning a test elevator TSV, tsv(tey), to a TSV-block tb;
cost(tsv(tey),tb;) = HPW L(tey, tb;) (3)

That is the half-perimeter wire length of the bounding box enclosing net te;, and TSV-block, tb;.

We take Figure 6 (a) as an example to compute the cost function of assigning a functional TSV.
In this figure, we are to compute the cost, cost(tsv(ey),tby), of assigning a functional TSV, tsv(e;), to
a TSV-block, tby. Suppose that there are two test nets, te; and tey, whose bounding boxes intersect
the center of tb;. The maximum detour wirelength equals 10 and the capacity of TSV-block tb; is
5. The shortest detour(te;) and detour(tey) are 3 and 2 + 6, respectively. Then, The cost function is
cost(tsv(er), th) = (2) + (3 + 55) = 1.5.

4.3 Network-flow Optimization for TSV Assignment

Our assignment algorithm is performed tier by tier. At each tier, the assignment problem is modeled
as a network flow optimization problem.

Now, we show how to model the problem. Assume we are to assign functional TSVs and test
elevator TSVs at tier [. Let T'SVy and T'SVr denote the sets of TSVs for functional TSVs and test
elevator T'SVs, respectively, to be assigned, and T'SVpg represents the set of TSV-blocks at tier [.

The flow network to model the assignment problem is denoted by G(V, E), where node set V' =
{(sUDF), (DrUCFE),(CrUt)} and edge set E = {(IEUFE),(TEUOE)}. sand t represent the source
node and destination node of flow network. In this flow network, each node n., € Dy corresponds to
a functional TSV, tsv(e;), in T'SVp, each node ny., € Dr corresponds to a test elevator TSV, tsv(tey),
in T'SVr, each node ny, € Cp corresponds to a TSV-block, tb;, in T'SVpg, and each node ngs, € Cr
corresponds to a duplication of T'SV-block, tb;. This duplication is to ensure that in each TSV-block,
there are enough test elevator TSVs to act as redundant TSVs to recover failed TSVs. [E, FE, TE,
and OF represent incoming edge, functional assignment edge, test assignment edge, and outgoing edge,
respectively. Incoming edge is constructed from source to all nodes in Dp and Dy, and outgoing edges
are constructed from all nodes in C'r and Cg to destination node, t.

There are two types of assignment edges, functional assigned edges F'E and test assigned edges T'E.

An assignment edge, edge;sy(e,)m,;, in F'E connecting a node n,, (i.e., tsv(e;)) in Dp and a node ny,
(i.e., tb;) in Cp represents a functional TSV, tsv(e;), is assigned to TSV-block, tb;. Assignment edges in
TE are further classified to two types. The first type is an assignment edge, edgesy(te,),m;, connecting
a node, ny, (i.e., tsv(tey)), in Dr and a node, ny, (i.e., th;), in Cr that represents a test elevator
TSV, tsv(ter), is assigned to TSV-block, tb;. The second type is an assignment edge, edgeste,) at; »
connecting a node, ny, (i.e., tsv(tey)), in Dr to a node, ngy, (ie., a duplication of TSV-block tb;),
that ensures there is an assignment of test elevator T'SVs to TSV-block for recovery of failed TSV.

For a functional TSV of a net e;, we construct edges only between the functional TSV and those
TSV-blocks that are inside the bounding box of net e;. For a test elevator TSV of a net tey, we construct
edges between the test T'SV and all TSV-blocks and their duplications.

The capacity of incoming edge and assignment edge is set to 1. The capacity of an edge connecting
a node ny, (i.e., TSV-block, tb;) and destination node ¢ is set to cap(tb;) — ay,. The capacity of an
edge connecting the duplication node, ngy,;, and destination, ¢, is set to ay,. This capacity will ensure
that there are ay,; test elevator TSVs assigned to TSV-block, tb;, for fault recovery.

As to the cost of an edge, for incoming edges and outgoing edges, they are set to 0. For assignment
edges, the cost are assigned as we presented in Section 4.2. After we model the assignment problem as
the network flow, we find the minimum cost maximum flow of the network.

Take Figure 6 as an example to demonstrate the modeling. Figure 6 (a) shows that there are two
TSV-blocks, tb; and tbe, two functional nets, e; and es, two test nets, te; and tes. Four TSVs, tsv(e;)
of ey, tsv(es) of eq, tsv(ter) of tey, and tsv(tes) of tes are to be assigned to T'SV-blocks.

There are two TSV-blocks, th; and tbs, in the bounding box of net e;. Hence, there are one edge
from n., to ny, and one edge from n., to ny,. Similarly, since tbs is the only TSV-block in the bounding
box of eq, there is only one edge from n., to ng,. Since test elevator TSV, tsv(tey) (tsv(tes)), can be
assigned to any TSV-blocks, there are edges connecting ne, (ne,) t0 Ny, Natbys Ny, and ngp,. Let
the capacity of TSV-block, tb;, be 5, and one redundant TSV is required to recovery faulty TSV in
tby. Then, we have the capacity of edge, , being 4 and the capacity of edgeas, being 1. Since the
cost of assigning tsv(e;) to thy is cost(tsv(ey),th) = 1.5 shown in Section 4.2, we have cost = 1.5 and

capacity = 1 on edgen,, n,,, -

Figure 6: An example of flow network

Table 3: The ratio of Net degree of MCNC floorplan benchmark

degree 2 3 4 5
ratio || 0.75 | 0.16 | 0.06 | 0.03

5 Experimental Results

Our experiment is developed on 3.0 GHz Linux environment with 16 GB memory. We implemented the
proposed algorithm using C++/STL programming language and performed experiments on all ITC’02
SoC test benchmark [24] except d281, h953, 2126, q12710, and a586710. The reason to exclude these
circuits is because they are small circuits with less than 15 blocks. Next, since the SoC test benchmark
only has the testing information such as the number of scan-chain, the number of input and output,
and the number of test pattern for developing SoC test scheduling, and has no physical information
such as the width and height of blocks, connecting relations among blocks, and pin location in block,
we need to generate the required physical information for 3-D IC floorplan. In our experiment, pitch of
TSV-to-TSV is set to 10um [21] including 5um TSV diameter and 2.5um keep-out-zone at both sides.

For generating connecting relations, we first profile the net degree data from MCNC floorplan
benchmark [25] and compute the ratios of the number of nets with the same degree to the total number
of nets. The ratios of net degree are reported in Table 3. Based on the ratios of net degree in this table,
we establish connecting relations among blocks. Next, similar to a previous work [23], we determine
the width and height of block according to its numbers of inputs and outputs. Finally, the pins are
evenly placed at the boundary of its own block.

Next, given the test bandwidth, we use testing scheduling methods for 3-D IC testing proposed by
Wu et al., [22] to determine communications among blocks.

In our experiment, we first compare two architectures for TSV recovery: test elevator TSV and
spare TSV. Note that, a spare TSV is an extra TSV and test elevator T'SVs can be regarded as a
free redundant TSV. In order to achieve 90% recovery rate of TSV, one redundant TSV per 50
functional TSVs is set [10]. Table 4 shows the numbers of spare TSVs and test elevator TSVs for
TSV recovery with different number of tiers, where #17°'SViync, #1'SVipare, and #1'SVies represent the
numbers of functional TSVs, spare TSVs and test elevator TSVs, respectively. Wso, Wi, and Wy are

Figure 7: The comparison for 3-D IC testing wirelengths by ours methodology and greedy_assignment
Table 4: The numbers of test elevator TSVs and spare TSVs

2-tiers 4-tiers
circuit name #TSVYspare #Tsmest #TSVspare #TSV;‘/est

#TSV pune Wsa | Wag | Wea | Waz | Wag | Wey #TSV fune Wso | Wag | Wea | Wiz | Wag | Wey

1023 1698 58 63 66 64 72 88 2412 82 83 96 | 102 | 104 | 116
p22810 1618 46 52 57 58 62 68 2287 71 75 93 84 | 108 | 108
p34392 912 31 35 38 44 54 54 1283 65 66 71 76 84 96
p93791 2724 60 60 62 62 66 72 3858 84 93 | 115 96 | 112 | 122
512505 3028 62 67 74 64 78 84 4307 92 | 105 | 142 98 | 134 | 164
ratio 1.00 1.00 1.00 1.17 1.23 1.25 1.00 1.00 1.00 1.16 1.29 1.19

test bandwidths of 32, 48 and 64, respectively. Take the first row labeled g1023 as an example. Entry
“58” under column labeled #7°SVjpare and column labeled W5, means to achieve 90% recovery rate (at
least one redundant TSV per 50 functional TSVs), 58 spare TSVs are allocated for test bandwidth of
32 bits. Entry “64” under column labeled #71'SV,.s; and column labeled W35 means that there are 64
free test elevator T'SVs are available for fault recovery when test bandwidth is 32 bits. From this table,
we can see that the number of test TSVs is enough to achieve 90% recovery rate of TSV.

Table 5 shows the testing wirelength in two and four tiers under different test bandwidths, where
#block, #nets, W Lgpare and W Ly, represent the number of blocks, the number of nets, the wirelength
using spare TSV and the wirelength using test elevator TSV, respectively. The testing wirelength means
the total wirelength for connecting all core wrappers in 3-D IC DfT architecture. From this table, the
wirelength of ours method as compared to spare TSV-based method can be reduced by 20% to 24% in
average.

In order to place spare TSV, extra area is needed. Table 6 shows the total area comparison, where
aregpare and areaq,,s represent the chip area using spare TSV and test elevator TSV, respectively.
It shows that using test elevator TSV as redundant TSV requires 3.4% and 4.1% in 2 and 4 tiers,
respectively, less area in average when compared to spare TSV method.

The next experiment is to compare the wirelength for 3-D IC testing by our method and greedy_assignment
method. Greedy_assignment method first assigns functional TSVs in TSV-blocks without detour, and
then assigns a test elevator TSV one by one to a TSV-block that has the shortest distance from the
test net to the TSV-block with free capacity. The wirelength of our method is 21.8% better than that

of greedy_assignment as shown in Figure 7.

Table 5: Comparison for the wirelength of 3-D IC testing of spare TSV and test elevator TSV

2-tiers 4-tiers
circuit name | #blocks | #nets W Lgpare (um) W Lours (1m) W Lgpare (m) W Lours (1

Waio Was Wea Waa Was Wea W3a Was Wea Wio Was

1023 15 1603 25647 | 37458 51945 | 17456 | 25414 | 38542 | 21784 | 32745 | 42515 | 14784 | 22154
p22810 29 1518 42176 | 63215 84751 | 36541 | 52145 | 71548 | 34584 | 51488 | 68587 | 27545 | 43548
p34392 20 852 38451 | 58421 76541 | 27458 | 46218 | 62145 | 31530 | 48957 | 62985 | 24521 | 42158
p93791 33 2577 53125 | 78542 | 105478 | 42154 | 63258 | 80641 | 43563 | 66215 | 86258 | 38547 | 56487
512505 32 2865 49851 | 72454 98745 | 43215 | 59214 | 83147 | 40878 | 62147 | 83541 | 31548 | 52147
ratio 0.76 0.78 0.82 0.78 0.82

Table 6: Comparison for the area of 3-D IC of spare TSV and test elevator TSV

2-tiers 4-tiers
o areaspare (pm?) areatest (um?) areaspare (Wm?) areatest (um?)

circuit name Wiz Was Wea Wiz Wias Wea W2 Wias Wea W2 Ways Wea
g1023 544644 550564 570694 529984 535824 559504 199809 196755 205450 190794 192897 201421
p22810 293764 306916 321489 274576 286225 297025 103684 109561 114244 98847 103041 106929
p34392 425104 444889 463362 412164 427716 454276 156025 158404 169744 148379 153978 163539
p93791 574564 589824 593812 559504 565504 582169 218089 212521 219024 201421 203581 209581
512505 3239034 | 3283344 | 3449559 | 3175524 | 3319684 | 3381921 1166052 1218988 1241841 1143189 1195086 1217492

ratio 1.04 1.03 1.03 1.00 1.00 1.00 1.05 1.04 1.04 1.00 1.00 1.00

6 Conclusions

In this paper, we proposed an architecture of TSV recovery by using test elevator T'SV. By our architec-
ture, no extra area incurs. The wirelength for 3-D IC testing based on test elevator TSV as compared
with that of spare TSV-based is improved by 20% to 24% in average. Furthermore, the wirelength of
3-D IC testing of our algorithm as compared to greedy_assignment is significantly better by 21.8%.

References

1]
2]

[3]

[11]

[12]

[13]

[14]

C. S. Tan, Ronald J. Gutmann, and L. Rafael Reif, “Wafer Level 3-D ICs Process Technology,” Springer , 2008

P. R. Morrow , M. J. Kobrinsky , S. Ramanathan , C.-M. Park , M. Harmes , V. Ramachandrarao , H.-M. Park ,
G. Kloster , S. List and S. Kim, “Wafer-level 3D Interconnects via Cu Bonding,” Proc. AMC, pp. 125-130, 2004

P. Garrou, C. Bower, and P. Ramm, “Handbook of 3D Integration: Technology and Application of 3D Integrated
Circuits,” Weinheim: XWILEY-VCH Verlag GmbH & Co. KGaA, vol. 1-2, 2008

Dean L. Lewis and Hsien-Hsin S. Lee, “A Scan-Island Based Design Enabling Prebond Testability in Die Stacked
Microprocessors,” in Proceedings of IEEE International Test Conference (ITC), pp.1-8 Oct. 2007

Chun-Chuan Chi, Marinissen, E.J., Goel, S.K., Cheng-Wen Wu, “Post-bond testing of 2.5D-SICs and 3D-SICs
containing a passive silicon interposer base,” in Proceedings of IEEE International Test Conference (ITC), pp.1-10,
20-22 Sept. 2011

Igor Loi, Federico Angiolini, Shinobu Fujita, Subhasish Mitra, and Luca Benini, “Characterization and Implemen-
tation of Fault-Tolerant Vertical Links for 3-D Networks-on-Chip,” IFEFE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 30, No.1, Jan. 2011

Cheng-Wen Wu, Shyue-Kun Lu and Jin-Fu Li, “On Test and Repair of 3D Random Access Memory,” in Proceedings
of Asia and South Pacific Design Automation Conference (ASP-DAC), pp.744-749, 2012

Heechun Park and Taewhan Kim, “Comprehensive technique for designing and synthesizing TSV Fault-tolerant 3D
clock trees,” International Conference on Computer-Aided Design (ICCAD), pp. 691-696, 2013

Chiao-Ling Lung, Yu-Shih Su, Shih-Hsiu Huang, Yiyu Shi and Shih-Chieh Chang, “Through-Silicon Via Fault-
Tolerant Clock Networks for 3-D 1Cs,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 32, no. 7, pp. 1100-1109, 2013

Fangming Ye and Krishnendu Chakrabarty, “T'SV Open Defects in 3D Integrated Circuits: Characterization, Test,
and Optimal Spare Allocation,” in Proceedings of Design Automation Conference, pp.1024-1030, 2012

Ang-Chih Hsieh, TingTing Hwang, “TSV Redundancy: Architecture and Design Issues in 3-D 1C,” IEEE Trans-
actions on Very Large Scale Integration Systems, vol.20, no.4, pp.711-722, April 2012

Jing Xie, Yu Wang, and Yuan Xie, “Yield-aware Time-efficient Testing and Self-fixing Design for TSV-based 3D
1Cs,” in Proceedings of Asia and South Pacific Design Automation Conference, pp. 738-743, Feb 2012

Li Jiang, Qiang Xu, and Bill Eklow, “On Effective Through-Silicon Via Repair for 3-D-Stacked 1Cs,” IEEE Trans-
actions on Computer-Aided Design of Integration Circuits and Systems, vol. 32, no.4, April 2013

Fu-Wei Chen, Hui-Ling Ting,and TingTing Hwang, “Fault-tolerant TSV by Using Scan-chain TSV,” to appear in
Asia and South Pacific Design Automation Conference (ASP-DAC), Jan. 2014

D. L. Lewis and H. S. Lee, A Scanisland Based Design Enabling Pre-bond Testability in Die-stacked Microprocessors,
in Proceedings of IEEE International Test Conference (ITC), pp. 1-8, 2007

Po-Yuan Chen, Cheng-Wen Wu and Ding-Ming Kwai, On-chip Testing of Blind and Open-sleeve TSVs for 3D IC
before Bonding, in Proceedings of VLSI Test Symposium (VTS), pp.263-268, 2010

Minki Cho, Chang Liu, Dae Hyun Kim, Sung Kyu Lim and Mukhopadhyay, S., “Pre-Bond and Post-Bond Test and
Signal Recovery Structure to Characterize and Repair TSV Defect Induced Signal Degradation in 3-D System,”
IEEE Transactions on Components, Packaging and Manufacturing Technology, vol.1, no.11, pp.1718-1712, Nov
2011

[18]

[25]

[26]

[27]

Marinissen, E. J., Chun-Chuan Chi, Jouke Verbree, and Mario Konijnenburg, “3D DfT Architecture for Pre-bond
and Post-bond Testing,” in Proceedings of IEEE International 3D Systems Integration Conference (38DIC), pp.1-8,
Nov. 2010

Chun-Chuan Chi, Marinissen, E.J., Goel, S.K., Cheng-Wen Wu, “DfT Architecture for 3D-SICs with Multiple
Towers,” in Proceedings of European Test Symposium (ETS), pp.51-56, May 2011

Johann Knechtel, Igor L. Markov, and Jens Lienig, “Assembling 2D Blocks into 3D Chips”, In Proceedings of ACM
international Symposium on Physical Design (ISPD), ,pp 81-88, 2011

Ming-Chao Tsai, Ting-Chi Wang, TingTing Hwang, “Through-Silicon Via Planning in 3-D Floorplanning, “/EEFE
Transactions on Very Large Scale Integration Systems’, vol.19, no.8, pp.1448-1457, Aug. 2011

Marinissen, E.J., Verbreee, J., and Konijnenburg, M. “A Structured and Scalable Test Access Architecture for
TSV-based 3D Stacked ICs,” in Proceedings of VLSI Test Symposium (VTS), pp. 269-274, 2010

B. Noia, S. Panth, K. Chakrabarty, and S. K. Lim, “Scan Test of Die Logic in 3D ICs using TSV Probing,” in
Proceedings of IEEE International Test Conference (ITC), pp. 1-8, 2012

Moongon Jung, Mitra J., Pan, D.Z. and Sung-Kyu Lim, “TSV Stress-aware Full-chip Mechanical Reliability Anal-
ysis and Optimization for 3-D IC,” IEEE Transactions on Computer-Aided Design of Intergrated Clircuits and
Systems, vol.31, no.8, pp.1194-1207, 2012

Xiaoxia Wu, Yibo Chen, Krishnendu Chakrabarty and Yuan Xie “Test-Access Mechanism Optimization for Core-
Based Tree-Dimensional SoCs,” in Proceedings of International Conference on Computer Design, pp. 212-218, 2008

Li Jiang, Lin Huang and Qiang Xu, “Test Architecture Design and Optimization for Three-Dimensional SoCs,” in
Proceedings of ACM/IEEE Design, Automation and Test in Europe (DATE), pp. 220-225, 2009

ITC’02 SoC test benchmark
http://itc02socbenchm.pratt.duke.edu/

MCNC floorplan benchmark
http://vlsicad.eecs.umich.edu/BK/BlockPacking/progress.html

PRI F AT S R T

p #:2015/07/31

PR ST

PE L R R TRRRELET

Fpow sz se R s 4R (3/3)

FEIEA F R

4 el 103-2220-E-007-013-

BrAagE: FEITFPHEE-FEAUEmE
e >]
E 1

A SRR TR

13 REHFTHHEAFLT SR EL

thh

D e

33 Y5 0 103-2220-E-007-013-

G S SES

AR IR L ET 0 S kA2 e RMA K (3/3)

F (R

A-h @ oo B d
53570 FHEC LS s BFRE | g TR R
B (s (WG RE | an S
Ao F i) i 2) £ P T S
%)
I 0 0l 100%
. AR 0 o 100% | %
gﬁ—q? -g 3
it gk 3 3 100%
L2 0 0l 100%
- / i—a i 0 0 100% |
S E i 0 0l 100%
Hr ¢ ¥ 0 0 100% |
A 1
W14 0 0 100% |+~
A4 4 Al 100%
fgraid L4 (L4 2 21 100% L
(&) [ELuFsh 0 0l 100% -
Zixpm 0 0f 100%
STEDES 0 0l 100%
N e 0 ol 100% | %
;4;,@ =83
P gt 1 1| 100%
P 0 0 100% |%/+
%11 v ﬁ%é % ¥ 0 0 100% "
© Rk 0 0 100%
BN (,P
B 0 o 100% |
R I
WAl & 0 o 100% |-+~
w4 0 0l 100%
S¥ritd A4 (44 0 0 100%
A =
("R Bl h 0 0l 100% '
Lo 0 0l 100%

g

H A%
(miz gz
5 hoyE B s d S
HREE S ERREE
V=g g NP LB T
SR R D B
Vicne S TSN | 2
EE G F A

}ljo)

= % I8 P

frebs

—

#R%EL S(7 FRredn)

/e

Re gz e fada e

0

0

0
21
e S 0
b B EB 0
B |Fg/1iep 0
b B A - BN A 0
B 0

PEASHAEZ 2 (BR) Ak

PHIH LA E S 22 f 74
;;L?up;gp FERFIEMGARE - ESFHPIERFR T S S22 Fi e}
B (f J&% HV%H’L’rfJ%%\;i%\T%'fE‘%%%\ HE B2t) s £ F§
EABNHIF LAY GREYC ARFRAE UG HEEE > - FEER
LAy r 38R dp R ~ S5 P HRERIT- FEFR

| EeT

(A= p % (G#p » 12100 F 5 ')
[5 %% % Bz
[]F]ecF 2@ %1
[J# & & 5]

m

2. L Ak BE DG LAY G h IR

wr WML Jagiza~f HERY &
B4 &® Y 57 He

[B D/r‘m“’ | Ed

He 0 (2100 3 5 0)

3. 7 II\%?JF’*?]& CHARIAT AAEREE 2 G > ERAL AR 2B R §
= (ﬁ;?-%éi%’rlé\'%'—’LrA%i%% s f%i B > %ﬁfgigé\;i@-* HEE2ZFT) (1
500 x % *2)

AP hieREIFFor - BRI T EHNFEMEL DR B LB REE EE
HoZAR®He 22013 & 11 " 1% A ICCAD F » % - & & 0 vufi’* TOARLR
R PBce A ¥ 5 2014 4 117 7| F & ICCAD 1 » 5= ## % 5 #
7T RS e A R h TR T] £) % 20153. 6 ' :5DAC
WIP * -

DAC {r ICCAD £ % + K3 p &L AEE R X R g2 — < 3t g 7 g K

-

PRTFIRFAE OB RABE LR L0 M ERDET 0 F - AR

G 0 RE LB B ehg 42 A 0 ICCAD 2013 ~ 2014 &£ ¢ ke ¥ 422
5 26%4c 25% » 2014DAC 2015 # ¢ kb~ X F 5% 22% - WIP &% F
19% o

>'l‘:\

ETRS -L;é&

