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ABSTRACT

We propose a remapping algorithm to tolerate the failures of Processing
Elements (PEs) on Multiprocessor System-on-Chip. A new graph modeling
is proposed to precisely define the increase of communication cost among
PEs after remapping. Our method can be used not only to repair faults but
also to improve the communication cost of given initial mapping results.
Experimental results show that under multiple failures, the communication
cost by our method is 43.59% less on average compared with that
by previous work [1] using the same number of spare PEs. Moreover,
the communication cost is further reduced by 4.16% after applying our
method to initial mappings produced by NMAP [2].

I. INTRODUCTION

With the advance in semiconductor technology, a large number of
Processing Elements (PEs) can be integrated on a single chip. Such
implementation is commonly known as Multi-processor System-on-Chips
(MPSoCs). Applications, consisting of several tasks, are mapped onto PEs
of a chip to perform various functions in high performance. As the demand
for high bandwidth and scalability increases, Network-on-Chip (NoC) is
considered a feasible communication infrastructure among PEs [3]. The
NoC is composed of routers connecting other routers, and each PE is
attached to its individual router. With the number of PEs integrated on
the MPSoC increasing, reliability has become an important design concern
[4]. Fault tolerant schemes are required to maintain the functionality of a
system when some of its components break down.

Faults in NoC-based MPSoCs may occur in the communication network
(i.e., links, network interfaces and routers) and the PEs. In this paper,
we focus on the failures in PEs, and assume that the communication
infrastructure can be handled by other techniques. There has been several
previous work targeting on solution of tolerating faulty PEs. One solution
is to move tasks of application running on a failed PE to other normal
ones when a failure is detected. C. Ababei and R. Katti [5] proposed a
2-step heuristic approach to address single and multiple PE failures. This
approach searches a new mapping region which is fault-free in first step,
and then remaps the tasks on faulty cores onto this new region in second
step. It tries to minimize overall migration of each task. O. Derin et al. [6]
proposed a fault-tolerant task mapping which is formulated as an Integer
Linear Programming (ILP) problem. Optimal mappings for all single-
fault scenarios are found at design time, which are used by the online
task remapping heuristic with the objective of minimizing communication
traffic in the system and total execution time of the application. The above
approaches inevitably cause the degradation of the system performance
due to extra workload added onto the remaining fault-free PEs.

A more practical solution to tolerate failures is to use hardware
redundancy. When an element of system fails, redundant element can
take over the role assigned to the failed one and the whole system
will run normally. The idea of providing redundant resources to improve
reliability is widely applied in various hardware components, including
PE, physical links, via, router, etc. In the work of L. Liu, et al. [1], spare
PEs are provided to construct a reconfigurable architecture. The topology
reconfiguration problem is converted into flow problem in graph theory,
and a repair approach is proposed to tolerate PE failures with minimal
impact on area, throughput and delay. This method reassigns tasks based
on the current locations. Hence, the reconfiguration cost is very low.
Moreover, the modeling is very effective and produces results of high
repair rate in polynomial time.

In this paper, the topology reconfiguration is adopted to repair PE
failures. We propose a remapping algorithm for homogeneous NoC-based
MPSoCs with spare PEs. Our algorithm minimizes the total communica-
tion cost and achieves 100% repair rate. Moreover, our method can be
applied not only to repairing the faults but also improving the performance
of initial mapping.

The rest of the paper is organized as follows. Chapter II describes the
motivation for this work. Chapter III presents our proposed remapping
approach in detail. Chapter IV shows the extension of the algorithm to
produce initial mapping. Experimental results are reported in Chapter V,
followed by conclusions in Chapter VI.

II. MOTIVATION

Communication cost is an important metric to measure the performance
of NoC-based systems. A commonly used metric [2], [7], [8] is given by:

commcost =
∑
i∈C

(amounti × hopcounti) (1)

where C is the set of the communication between pairs of tasks, amounti
is the transferred data bytes of communication i, i ∈ C, and hopcounti
is the minimum number of hops between the mapped PE locations of
source task and target task of communication i.

L. Liu, et al. [1] has proposed an elegant modeling of repairing failed
PE. A non-spare faulty PE at location (x, y) is replaced by a healthy PE at
location (x′, y′), and then the PE at location (x′, y′) is replaced by other
healthy PE, and so on, until the replacement ends at a spare one. Such
a replacement chain is defined as a repairing path. To find a repairing
path, a mesh architecture is represented as a topology graph, a directed
graph, where each node denotes a PE on the mesh and each directed edge
connecting two nodes denotes the replacement of two PEs. To ensure the
minimal impacts on communication distance (hopcount), a PE can only
be replaced by its neighbour PEs. However, the cost of the amount of data
transmission is defined on each node rather than edge, which takes the
communication cost into consideration indirectly. An example is shown
in Figure 1. In Figure 1(a), a 3 × 4 architecture with application tasks
mapped onto its non-spare PEs (R1-R3, R5-R7, R9-R11), and the weight
on edge between a pair of tasks denotes the corresponding communication
amount. According to the above modeling, it is converted into the topology
graph, as illustrated in Figure 1(b). Note that the communication cost is
accumulated on each node. Let R5 be a faulty PE. A repairing path
R5 → R1 → R2 → R3 → R4 can be seen as a unit flow starting
from a source node—faulty PE R5 and ending to a target node—spare
PE R4. The repair method using minimum cost maximum flow (MCMF)
algorithm is used to repair multiple faults. The modeling is very effective
and produces results of high repair rate in polynomial time.

However, there are two problems in this approach. One is that the
communication cost modeled on node by [1] is not able to describe
the actual communication cost and thus unsatisfactory results may be
produced. Figure 2(a) shows a 3 × 4 architecture with one faulty PE to
be repaired. Figure 2(b) shows that a minimum cost repairing path based
on the cost defined by [1] is obtained. After task remapping, as shown
in Figure 2(c), the total communication cost becomes commcost =
(6×2+30×2+10×1+5×1+5×2+24×1+30×1+5×2) = 161. But
choosing another repairing path, as shown in Figure 2(d), less amount of
communication cost after remapping can be obtained as shown in Figure
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Fig. 1. (a)Task mapping on 3x4 architecture (b)Topology graph modeled by [1].
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Fig. 2. (a)Initial mapping with 1 faulty PE. (b)The minimum cost repairing path
obtained by [1]. (c)Remapping result from [1], commcost = 161. (d)Another
repairing path. (e)Remapping result with lower communication cost, commcost =
131.

2(e), where commcost = 131 . Clearly, the defined cost in [1] is not
precise enough to represent the communication cost.

The second problem is that previous work [1] does not guarantee to
fully repair a faulty NoC-based chip even when there are enough spare
PEs. The reason is that each PE can be replaced by its neighbour PE
only, which means a repairing path should be a continuous replacing
chain. Figure 3 shows examples of 3×4 and 4×5 architecture with non-
repaired faulty PE and un-used spare PE. In Figure 3(a), the faulty PEs
are R1, R2 and R5. R2 and R5 can be repaired by the replacing chains
R2 → R3 → R4 and R5 → R6 → R7 → R8 respectively. Yet R1
cannot be repaired since all the neighbour PEs of R1 are faulty. Similar
situation occurs in another example shown in Figure 3(b) with faulty PEs
R6, R11, R12 and R17. In this case, R11 is blocked by other 3 faulty
PEs and cannot find out a continuous replacing chain to a spare PE, R5.

Motivated by the above two observations, we propose a communi-
cation driven remapping algorithm to repair faulty PEs. We consider
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Fig. 3. Examples of unfully repaired system.

the communication demands between pairs PEs directly to minimize the
total communication cost. Moreover, we allow each PE can be replaced
by PE hops away from it, and guarantee 100% repair rate when the
number of faulty PEs are not more than that of spare ones. Lastly, in
this paper we assume faults occur one by one rather than simultaneously.
Our assumption is more reasonable than previous work [1], since the
probability of PEs simultaneously breaking down is extremely low.

III. REPAIRING ALGORITHM BY REMAPPING

Our objective is to tolerate the PE failures by remapping while minimiz-
ing the communication cost. We firstly present the problem formulation of
the remapping problem in Section III-A. Then, we describe the proposed
repairing algorithm in detail in Section III-B.

A. A New Graph Modeling
We follow the idea of repairing path presented in previous work [1]. A

repairing path can be seen as a flow starting from a faulty PE and ending
at a spare PE, and the problem of obtaining the optimal repairing path
can be converted into a minimum cost flow (MCF) problem.

As mentioned in Chapter II, the communication cost can be expressed
as commcost in Equation (1). For precisely modeling the impact on
commcost, we will introduce a new topology graph. Our core idea is
to model the variation of commcost for all possible task re-allocation
scenarios in the graph. The new topology graph is formally defined as
following.

The topology graph is a directed graph, G = (V,E,Cost). Each vertex
vi ∈ V represents a PE in the NoC-based MPSoC, and each directed edge
vi → vj denoted as ei,j ∈ E, represents the PE replacement of vi by vj ,
which means the task on vi is remapped onto vj . The cost of each edge
ei,j , denoted as costi,j ∈ Cost, represents the increment in commcost,
∆commcost, when the task on vi is remapped onto vj assuming un-
changed locations of other tasks. Figure 4(a) shows an example of a 2×3
architecture with initial mapping. If we remap task B from R2 onto R3,
the commcost will increase 15, i.e., (10×2+5×3)−(10×1+5×2) = 15.
Hence, costR2,R3 on edge R2→ R3 is 15 in the topology graph as shown
in Figure 4(b). Similarly, the commcost will decrease 10 if we remap
task C from R4 onto R2. Hence, costR4,R5 is -10. A repairing path in
the topology graph is composed of a set of continuous directed edges,
the total cost of these edges is exactly the ∆commcost, which is the
commcost after remapping compared to the commcost before mapping.
Although our cost definition of each edge is modeled in the local view
assuming unchanged locations of other tasks, global optimal solution can
be obtained by accumulating cost of edges in repairing path. We will
explain it later.

In order to solve the non-fully repairing problem of previous work [1]
mentioned in Chapter II, we allow a PE can be replaced by non-neighbour
PE. That is, an edge ei,j is constructed between vi and vj even when vi
and vj are not adjacent to each other. However, in order to model cost
on edges accurately, not all pairs of vertices ∈ V have edges between
them. Consider an example shown in Figure 5. Figure 5(a) shows a 2×3
architecture. R1, R2, R4 and R5 are non-spare PEs, while R3 and R6 are
spare ones. One fault occurs in R1. The commcost of initial mapping
is 50. The complete topology graph is constructed as shown in Figure
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Fig. 4. The 2× 3 topology graphs with our defined cost on each edge.
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Fig. 5. (a)Initial mapping. (b)Complete topology graph. (c)Remapping result based
on repairing path R1 → R4 → R5 → R6. (d)Remapping result based on
repairing path R1→ R4→ R2→ R3.

5(b), where each non-spare node has directed edges going to the other
nodes including spare ones. Consider the repairing path X , R1→ R4→
R5 → R6, with total cost, 0 + (−15) + 20 = 5. The remapping result
based on the repairing path X is shown in Figure 5(c). The commcost
becomes 55 from 50 after remapping. ∆commcost = 5 represents the
exact cost of repairing path X . However, consider another repairing path
Y , R1→ R4→ R2→ R3, with total cost, 0 + (−10) + 15 = 5 in the
graph shown in Figure 5(b). The remapping result based on the repairing
path Y is shown in Figure 5(d), where commcost becomes 75 from 50.
Hence the cost of path Y is ∆commcost = 25, rather than the incorrect
value ∆commcost = 5. This inconsistent costs between repairing path
and actual remapping result is caused by the down-and-up (back-and-
forth) moves as shown in Figure 5(a). Consider the communication link
where data amount is 10 between task A and task B in Figure 5(a). When
only remapping task A from R1 to R4, the distance between these two
tasks become zero hop and hence the communication cost between them
decreases 10. When only remapping task C from R4 to R2, the distance
between task A and task B is still one hop, and hence the communication
cost between them increases 0. However, the increment of communication
cost is not (−10) + 0 if we perform both actions, remapping the task
A from R1 to R4 and task C from R4 to R2, at the same time. The
distance between A and C becomes two hops and the communication cost
increases 10 actually. When a repairing path is not moving monotonically

increasing (decreasing) in x or y-direction, incorrect cost is modeled.
The following Lemma 1 gives conditions to build the topology graph.

Lemma 1. Let R0 → R1 → ... → Rn be a given repairing path and
Rk be the kth PE of the path located at (xk, yk), where k is a positive
integer. To obtain the correct cost, the given repairing path should subject
to the following conditions:{

x0 ≤ x1 ≤ ... ≤ xn or x0 ≥ x1 ≥ ... ≥ xn
y0 ≤ y1 ≤ ... ≤ yn or y0 ≥ y1 ≥ ... ≥ yn

Proof. The communication between pairs of tasks can be classified into
three cases based on whether the tasks are on the PEs of repairing path.
Three cases are that both tasks are not on the PEs of the path, only
one of them is on the PEs of the path, and both are on the PEs of the
path. Since we locally define the cost on topology graph assuming that
locations of other tasks are unchanged, clearly our cost modeling is correct
for communication of the first and second cases.

Let us consider the communication of third case. Assume there is a
communication link between task A and task B with communication
volume amountA,B . Task A is on Ri located at (xi, yi) and task B
is on Rj located at (xj , yj), where i < j and i, j ∈ 0, 1, ..., n. After
remapping based on the given repairing path, task A is remapped onto
Ri+1 located at (xi+1, yi+1) and task B is remapped onto Rj+1 located at
(xj+1, yj+1). The number of hops between task A and task B, represented
as hopcountA,B , is changed to hopcount′A,B after remapping. Hence,
communication cost is also changed according to Equation (1). We obtain

∆commcostA,B = amountA,B × (hopcount′A,B − hopcountA,B)

= amountA,B × [(|xj+1 − xi+1|+ |yj+1 − yi+1|)− (|xj − xi|+ |yj − yi|)]

= amountA,B × [α(xj+1 − xi+1) + β(yj+1 − yi+1)− α(xj − xi)− β(yj − yi)]

= amountA,B × [α(xi − xi+1 − xj + xj+1) + β(yi − yi+1 − yj + yj+1)]

(2)

where

α =

{
1, if x0 ≤ x1 ≤ ... ≤ xn
−1, if x0 ≥ x1 ≥ ... ≥ xn

β =

{
1, if y0 ≤ y1 ≤ ... ≤ yn
−1, if y0 ≥ y1 ≥ ... ≥ yn

In our modeling, ∆commcostA,B on edge Ri → Ri+1 is modeled
as ∆commcostA,B(Ri → Ri+1) = amountA,B × [α(xi − xi+1) +
β(yi − yi+1)], and ∆commcostA,B on edge Rj → Rj+1 is modeled
as ∆commcostA,B(Rj → Rj+1) = amountA,B × [α(xj+1 − xj) +
β(yj+1− yj)]. Hence, total ∆commcostA,B on the given repairing path
is

∆commcostA,B = amountA,B × [α(xi − xi+1) + β(yi − yi+1)]

+ amountA,B × [α(xj+1 − xj) + β(yj+1 − yj)]

= amountA,B × [α(xi − xi+1 − xj + xj+1) + β(yi − yi+1 − yj + yj+1)]

(3)

As we can see, the results of Equation (3.1) and (3.2) are equal, which
clearly indicate that our modeling can obtain the solution with correct
total communication cost.

Following Lemma 1, we limit topology graph by removing all the edges
that cause down-and-up (back-and-forth) moves. In this paper, the spare
PEs are assumed to place at the right side of the architecture. Therefore
we firstly construct all the edges going to right in x-direction. Next, up
edges and down edges can not coexist in the same topology graph. But
if the edges are limited to going only up or down in the y-direction, the
solution space will significantly be reduced. Therefore, we construct two
topology graphs. They are the right-up one and the right-down one, which
include all the possible repairing paths without down-and-up (back-and-
forth) moves. An example of the 2×3 architecture shown in Figure 4(a) is
modeled to two topology graphs illustrated in Figure 4(b) and (c), where



Figure 4(b) shows the 2 × 3 right-up topology graph, and Figure 4(c)
shows the 2× 3 right-down one.

B. Repairing Algorithm

The flow of our proposed repairing algorithm is illustrated in Figure 6.
Given an initial mapping. When a new faulty PE occurs, we start repairing
procedure. First, the corresponding topology graphs are constructed. Then
MCF is applied to find a repairing path. Finally, tasks are remapped
following the repairing path. We describe each step in detail as follows.

Step 1: Construct the topology graphs
Once a PE failure is detected, the right-up topology graph and the right-

down topology graph are constructed. Meanwhile, the cost of each edge
is defined according to the communication among PEs, as mentioned in
Section III-A.

Step 2: Apply MCF to obtain the repairing path
For each topology graph, define two additional nodes S and T , where

S is the source node and T is the target node. Define an edge from S
pointing to the faulty PE. For each spare PE, define an edge from it to
T . The cost of these edges are defined as 0. Then, apply the minimum-
cost-flow algorithm on these two topology graphs respectively. Clearly,
we will obtain two flows, one is from the right-up topology graph and
the other is from right-down topology graph. Simply choose the one with
lower cost as the repairing path.

Step 3: Remap the tasks
Remap the involved tasks based on the repairing path produced by step

2. A new mapping result is produced. Note that if a new faulty PE occurs,
the procedure is repeated. New topology graphs are constructed based on
the remapping result produced in the last iteration and failed nodes in the
previous iteration are removed from topology graphs.
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Fig. 6. Flow diagram of the proposed repairing algorithm.

Figure 7 shows an example of proposed repairing algorithm. A fault
occurs in PE, R1, of the 2× 3 architecture, as shown in Figure 7(a). The
right-up and right-down topology graphs are constructed and then MCF
algorithm is applied. A repairing path R1→ R2→ R3 is obtained from
the right-up topology graph illustrated in Figure 7(b) and the total cost is
15, while a repairing path R1→ R4→ R5→ R6 is obtained from the
right-down topology graph illustrated in Figure 7(c) and the total cost is
5. Therefore, we select the repairing path in right-down topology graph.
Finally, the tasks are remapped by the repairing path as shown in Figure
7(d) and ∆commcost = 5. That is, the communication cost of remapping
result increases 5 compared to that of initial mapping.

IV. EXTENSION TO INITIAL MAPPING

Many task-mapping methods have been proposed [9]. Among them,
balance of work load and communication cost are commonly used as
mapping metrics. Our remapping technique is to move the complete task
assigned to one PE to the other one. Hence, it affects communication cost
rather than load balance.
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Fig. 7. (a)Initial mapping. (b)A min-cost repairing path obtained from the right-
up topology graph. (c)A min-cost repairing path obtained from the right-down
topology graph. (d)Remapping result. .

Besides repairing faulty PEs, our method can also be applied to further
improve the communication cost of a given initial mapping. A two-step
algorithm is proposed to perform a re-mapping:
• Step 1: Placement of faulty PEs
• Step 2: Application of our repairing algorithm
To utilize our method to further improve the communication cost of a

given initial mapping. The first step is to assume the locations of faulty
PEs and spare PEs. Then, the second step is to call our algorithm to repair
the faulty PEs by spare PEs.

An example is illustrated in Figure 8. Figure 8(a) is a given initial
mapping with 9 tasks mapped onto a 3×3 NoC. First, we assume PEs on
the left column are faulty and create a column of spare PEs on the right
side, as illustrated in Figure 8(b). Next, the repairing algorithm mentioned
in Section 3.2 is applied, and the remapping result is obtained as illustrated
in Figure 8(c). Except the column of faulty PEs, we take the relative
position of tasks mapped on remaining 3×3 region as the new mapping
result. The new initial mapping is shown in 8(d).

Since we assume faults occur one by one in our approach, the specified
locations of faults in Figure 8(b) will give 3! remapping results due to
different sequence of fault occurrence. Besides faulty PEs on the left side,
faulty PEs can also be located on the other three sides, i.e., right, top and
bottom sides. Figure 9(a), (b), (c) and (d) shows 3×3 NoC with faults on
the right, bottom, top and left respectively, and their spare PEs are added
on the opposite side of the faulty PEs. Therefore, at least ( n!×4 ) mapping
results can be obtained for an n × n architecture. In our experiment, n
is less than 10 and hence we could try all possible sequences and select
the result with the lowest commcost as our new initial mapping result.

V. EXPERIMENTAL RESULTS

In this chapter, we presents the benchmarks, environment setting and
experimental results. Our proposed approach is implemented using C and
verified on a MPSoC evaluation tool called Transaction Generator (TG)
[10]. Eight application models are used in the experiment as shown in
Table I. av bench is from literature [11], while others: RS enc, RS dec,
H264-720p dec, H264-1080p dec, Fpppp, FFT-1024 complex and Sparse
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Fig. 8. Extension to initial mapping.
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Fig. 9. PE failures are assumed on 4 different sides.

are from the realistic NoC traffic benchmark suite MCSL [12] based on
real applications. The mapping of application tasks is on a mesh 4 × 5
architecture, where 4 PEs on the right most column are spare PEs, and XY
deterministic routing is used. Hence, tool in MCSL partitions tasks to 16
groups and each group is mapped to one non-spare PE. As shown in Table
I, column labelled #CommunicationLinks among tasks is the num-
ber of communication links among tasks in the original spec. After map-
ping, we have column labelled #CommunicationLinks among PEs
to represent the total number of communication links among PEs which
are related to the commcost. In the following experiments, we firstly
perform the result of repairing PE failures, and then followed by the effect
on initial mapping. Finally, the overall impact of applying our approach
to both initial mapping and repairing is presented in the last experiment.

A. Results on Repairing

In repairing experiments, we present the evaluation results of repair
rate and communication cost. Our repairing algorithm, called Ours for
short, is compared with Liu’s work [1] called Liu′s. Repair rate is the
probability that faulty PEs can be repaired by spare ones. To conduct

experiment on repair rate, we randomly generate 50000 faulty patterns
for the number of faults varying from one to four on 4 × 5 and 8 × 9
mesh NoC respectively. Liu’s and our repairing algorithm are then called
to repair faulty PEs. The results of repair rates are shown in Figure 10. It
shows that as the number of faulty PEs increases, repair rate of Liu′s has
fallen rapidly in both 4×5 and 8×9 NoC architectures. In contrast, Ours
remains 100% repair rate for all cases. For experiment of communication
cost, initial mapping is produced by NMAP. 10000 faulty patterns are
randomly generated. Different applications have different characteristics,
including communication amount and number of communication links
among tasks. For fair comparison of different applications, we use average
hopcount each data byte traverses as the metric of communication cost
instead of the commcost. Figure 11 shows the average communication
cost of all applications with different number of faulty PEs. Let us take
number of faulty PEs = 0 as the base. When number of faulty PEs =
1, communication cost of Liu′s raises 0.119 hopcount/byte averagely
while that of Ours raises only 0.064 hopcount/byte averagely. That is,
Ours is improved by (0.1199− 0.0643)/0.1199 = 0.463 = 46.3%. We
compute the improvement for all cases in different number of faulty PEs
and then compute the average. The communication cost of Ours achieves
43.59% less on average than that of Liu′s.
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Fig. 10. Comparison of repair rate of Liu’s [1] versus Ours under different number
of faults.
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Fig. 11. Comparison of communication cost of Liu′s versus Ours under different
number of faults.

B. Results on Initial Mapping

As mentioned in Chapter IV, our method can be applied to improve
initial mappings. We choose two initial mapping results, from Ori and
NMAP respectively, as our baseline mappings. Ori is the default mapping
of application models provided by TG, while NMAP [2] is a mapping
algorithm that minimizes the average communication delay under the
bandwidth constraint. With or without applying our proposed remapping
algorithm to Ori and NMAP results, we have four combinations as shown
in Table II. Figure 12 shows the comparison of communication cost of 4
initial mapping results for each application. Except FFT-1024 complex,
either results of Ori or NMAP are improved after applying our remapping
algorithm. Average improvement of Ori+Ours over Ori is 10.91% and that
of NMAP+Ours over NMAP is 4.16%.



TABLE I
BENCHMARKS.

Application Description # Tasks # CommunicationLinks
among tasks among PEs

av bench a video codec pair and an audio codec 40 57 25
RS enc Reed-Solomon code encoder 262 348 18
RS dec Reed-Solomon code decoder 182 392 71
H264-720p dec H.264 video decoder with a resolution of 720p 2311 3461 65
H264-1080p dec H.264 video decoder with a resolution of 1080p 5191 7781 65
Fpppp Chemical program performing multi-electron integral derivatives 334 1145 120
FFT-1024 complex Fast Fourier transform with 1024 inputs of complex numbers 16384 25600 116
Sparse Random sparse matrix solver 96 67 34

TABLE II
COMPARISON OF 4 COMBINATIONS FOR INITIAL MAPPING.

Mapping Algorithm Description
Ori default mapping that benchmarks provide

Ori + Ours applying our approach on default mapping
NMAP a mapping technique proposed in [2]

NMAP + Ours applying our approach on NMAP result
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Fig. 12. Comparison of communication cost of 4 methods for initial mapping.

C. Overall Effect

Finally, we conduct the experiment to see the overall effect by adopting
our approach to both initial mapping and repairing. Three combinations of
algorithms for initial mapping and repairing are: Nmap–Liu, NmapOurs–
Liu and NmapOurs–Ours. In Nmap–Liu, the initial mapping is produced
by NMAP and the repairing by Liu’s [1]. In NmapOurs–Liu, the initial
mapping is produced by NMAP+Ours and the repairing by Liu’s [1]. In
NmapOurs–Ours, the initial mapping is produced by NMAP+Ours and
the repairing by Ours. The experimental result is shown in Figure 13.
By comparing the Nmap–Liu and NmapOurs–Liu, we can observe that
communication cost by NmapOurs–Liu decreases an average of 3.94% as
compared with that by Nmap–Liu due to applying our method to initial
mapping. When comparing the NmapOurs–Liu and NmapOurs–Ours,
we can see the increment of communication cost caused by increasing
faults is smaller in NmapOurs–Ours than in NmapOurs–Liu. The result
of NmapOurs–Ours achieves 39.08% improvement on average compared
with the result of NmapOurs–Liu.

VI. CONCLUSIONS

In this paper, we have presented a repairing algorithm to tolerate PE
failures by remapping the application tasks. Our proposed graph modeling
can precisely describe the the increment of communication cost resulting
from task remapping. Our mapping result is 43.59% better than previous
work [1]. As long as the number of faulty PEs are not more than that
of spare ones, we can achieve 100% repair rate for all cases. Moreover,
the proposed algorithm can also be applied to the initial mappings to
improve results. We have performed a set of experiments to demonstrate
that our proposed algorithm can indeed obtain better results in terms of
communication cost.
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