
820 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 3, MARCH 2017

A Novel Cache-Utilization-Based Dynamic
Voltage-Frequency Scaling Mechanism

for Reliability Enhancements
Yen-Hao Chen, Yi-Lun Tang, Yi-Yu Liu, Allen C.-H. Wu, and TingTing Hwang

Abstract— We propose a cache architecture using a 7T/14T
SRAM (Fujiwara et al., 2009) and a control mechanism for
reliability enhancements. Our control mechanism differs from
conventional dynamic voltage-frequency scaling (DVFS) methods
in that it considers not only the cycles per instruction behaviors
but also the cache utilization. To measure cache utilization,
a novel metric is proposed. The experimental results show
that our proposed method achieves 1000 times less bit-error
occurrences compared with conventional DVFS methods under
the ultralow-voltage operation. Moreover, the results indicate
that our proposed method surprisingly not only incurs no
performance and energy overheads but also achieves on average a
2.10% performance improvement and a 6.66% energy reduction
compared with conventional DVFS methods.

Index Terms— 7T/14T SRAM, cache, dynamic voltage-
frequency scaling (DVFS), reliability.

I. INTRODUCTION

RELIABILITY has become one of the major considera-
tions in system design recently. Reliability is especially

critical in systems where safety of human life is concerned.
For example, an engine control unit (ECU) in an automotive
system controls the fuel injection to the cylinders. A precise
amount of fuel must be injected to the cylinders at an
exact time, or the engine may run into dangerous conditions.
In addition, an implantable pacemaking system [2] is expected
to provide a perfectly stable function in order to maintain the
health of the patient.

On the other hand, with the rapid progress of the advances
in fabrication technology, more and more transistors can be
embedded in a single chip. Hence, recent processor design
developers tend to add more CPU cores as well as large caches
into a single chip for performance improvements. This design
trend has incurred a severe power-consumption problem that

Manuscript received May 20, 2016; revised August 23, 2016; accepted
September 23, 2016. Date of publication October 28, 2016; date of current
version February 22, 2017.

Y.-H. Chen and T. Hwang are with the Department
of Computer Science, National Tsing Hua University, Hsinchu 30013, Taiwan
(e-mail: yhchen@cs.nthu.edu.tw; s102062607@m102.nthu.edu.tw;
tingting@cs.nthu.edu.tw).

Y.-L. Tang is with the Department of Computer Science, National Tsing
Hua University, Hsinchu 30013, Taiwan, and also with Novatek, Hsinchu.

Y.-Y. Liu is with the Department of Computer Science and
Engineering, Yuan Ze University, Taoyuan 32003, Taiwan (e-mail:
yyliu@saturn.yzu.edu.tw).

A. C.-H. Wu is with the School of Digital Media, Jiangnan University,
Wuxi 214122, China (e-mail: allenwuuw@gmail.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2016.2614993

may greatly affect the battery life, performance, and reliability
of the devices. In recent years, the dynamic voltage-frequency
scaling (DVFS) technique has been used to reduce the power
consumptions of processors [3]. Using this technique, a DVFS
controller can detect computational patterns in execution and
determine when to scale down the voltage and frequency of the
CPU cores for energy savings. Many modern processor designs
have supported per-core DVFS, e.g., ARM’s big.LITTLE cores
and Intel’s Turbo Boost technology, in which each core has
the ability to independently scale its voltage-frequency level.
In recent multicore systems, extended control mechanisms
are applied to control cores as well as uncore components
for power reduction [4], [5]. Nevertheless, all of the above-
mentioned DVFS frameworks suffer the limitation of the
lowest supply voltage constraint due to the reliability of the
SRAM cache, and none of them consider cache reliability in
their control mechanisms.

A large cache in a processor generates excessive power
consumption. Since the leakage power dominates the power
consumption of a cache, scaling down the supply voltage
seems to be a good solution for power reduction. However,
many researchers also found that under the ultralow-voltage
operation, the SRAM cache is very sensitive to noises and
becomes very unreliable [6]. Over the years, many alternative
SRAM cells have been proposed to tolerate low supply volt-
ages, including 8T, 9T, 10T, and 12T SRAM cells [7]–[11],
by trading off the SRAM cache density for better reliability.
However, those alternative SRAM cells may entail per-
formance loss when executing cache capacity-intensive
applications. To address capacity and reliability issues,
Fujiwara et al. [1] have proposed a configurable and depend-
able 7T/14T SRAM cache architecture that can trade cache
capacity for reliability improvement under an ultralow supply
voltage condition dynamically.

In this paper, we present a reliable cache architecture
using the 7T/14T SRAMs and a control mechanism for
DVFS by considering performance improvement, power reduc-
tion, and reliability enhancement. We study the interrelation-
ship between computational patterns in execution and cache
behaviors and devise a control scheme that can effectively
switch the cache operation mode between a reliable state
under an ultralow supply voltage for energy savings, a high-
performance state under low cache utilization, and a normal
state.

The rest of this paper is organized as follows. Section II
describes previous work. Section III presents our motivation.
In Sections IV and V, we present the proposed system

1063-8210 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

CHEN et al.: NOVEL CACHE-UTILIZATION-BASED DVFS MECHANISM FOR RELIABILITY ENHANCEMENTS 821

architecture and control mechanism, respectively. Finally,
we present the experimental results and conclusions in
Sections VI and VII.

II. PREVIOUS WORK

Over the years, many alternative SRAM cells have been
proposed to tolerate low supply voltages, including 8T SRAM
cells [7], 9T SRAM cells [8], 10T SRAM cells [9], and 12T
SRAM cells [10], [11], by trading off the SRAM cache density
for better reliability. However, those alternative SRAM cells
may suffer performance loss when executing cache capacity-
intensive applications.

Another widely used technique for fault tolerance under
low supply voltages is to use error-correction codes (ECCs).
Nowadays, SRAM caches are typically equipped with
single-error correction double-error detection (SECDED)
codes [12], [13]. Chishti et al. [14] have proposed multibit
segmented ECC, which divides a cache line into multiple small
segments and corrects errors on a per-segment basis to simplify
ECC implementation. Alameldeen et al. [15] used variable-
strength ECC to address multibit failures of a small number
cache lines. Zhang et al. [16] utilized aggressive double-error
correction triple-error detection codes to achieve high relia-
bility. However, using ECC requires additional hardware for
encoding and decoding, which results in a larger cache area
and longer access latency.

Data block replication for reliability enhancement has also
been proposed. Chakraborty et al. [17] have proposed mul-
ticopy cache that maintains multiple copies of every data
item to ensure reliability under low voltage. Yalcin et al. [18]
presented a cache architecture that uses various replications to
provide different degrees of fault tolerance. However, both of
the above-mentioned replication approaches require massive
area overhead.

Reconfiguration of caches to enhance reliability was also
adopted by many researchers. Abella et al. [19] observed that
most of the SRAM cells are robust enough to tolerate low sup-
ply voltages. Thus, they presented a fault tolerance scheme in
caches by disabling unreliable SRAM cells. Ansari et al. [20]
proposed the Archipelago cache architecture that groups sev-
eral cache lines with the same wordlines and applies an
MUXing layer to dynamically reconfigure itself to absorb
failing SRAMs at block granularity. Mahmood et al. [21]
also proposed a nonintrusive and reconfigurable cache named
Macho that remaps faulty SRAM cells with word granularity.
It also added an additional fault map in the cache tag to
identify the faulty words. Sasan et al. [22] proposed to use
auxiliary structures to improve defect tolerance. All of the
above-mentioned cache architectures required an SRAM cell
testing procedure on booting as well as a faulty table and
complex remapping controller to record and tolerate defects,
which will lengthen the cache access latency.

Instead of adopting a complex reconfiguration scheme,
many studies proposed to disable faulty cache blocks
and use only robust cache blocks to guarantee cache
functionality [13], [16], [23]. However, those methods suffer
inevitable performance penalty.

Fig. 1. Comparisons of BERs among the conventional methods and the
dependable cache [1].

Many studies have been performed on a DVFS control-
ling framework. Most of them focus on single-core DVFS.
Magklis et al. [24] proposed a method that uses a profile-
based compiler and configuration instructions to scale up/down
the voltage and frequency of the system. Isci et al. [25] pro-
posed a hardware prediction table to predict memory loading
and determine the voltage-frequency level of the application.
Dhiman and Rosing [26] proposed a software-level DVFS
framework that detects the memory usage of the cycles per
instruction (CPI) to determine the voltage-frequency scaling
level. DVFS on the interconnect network has also been studied
(both links [4] and routers [5]). Chen et al. [27] propose to
consider both the network and the last level cache (LLC)
(so-called the uncore) when determining the network voltage-
frequency level.

All of the above-mentioned DVFS frameworks suffer the
limitation of the lowest supply voltage constraint of the reliable
SRAM cache. Moreover, none of them consider the cache
capacity requirements of workloads.

Works concerning real-time systems [28], [29] have studied
the relationship between cache utilization and CPU utiliza-
tion, I/O operations, memory access, or interrupts to satisfy
hard timing constraints. However, reliability and cache power
consumption were not considered.

III. MOTIVATION

Fig. 1 shows the comparisons of bit-error rates (BERs)
among the conventional methods and the dependable cache
produced by Fujiwara et al. [1] where they have demon-
strated that using the proposed 7T/14T memory cells, the
minimum voltages in read and write operations are improved
by 0.2–0.26 V, respectively. Furthermore, the BERs using the
dependable low-power mode are much more reliable compared
with the conventional 6T, 6T with ECC [30], and 6T with
multimodule redundancy methods [31]. This design allows the
memory cells to perform reliable operations under ultralow

822 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 3, MARCH 2017

Fig. 2. Cache utilization example.

supply voltages, and hence achieve higher energy savings.
This motivates us to develop a cache system using the 7T/14T
memory cells.

Consider the 7T/14T memory cells that consist of three
modes: normal mode, high-speed mode, and dependable low-
power mode (we will present the details of 7T/14T memory
cells in Section IV-A). When operating in the high-speed
mode and dependable low-power mode, the capacity of the
memory cell is only half of that when operating in the normal
mode. In this case, it is called the line-merged cache. In a
line-merged cache, if a normal voltage is applied, we have a
high-speed cache (high-speed mode) whereas if a low voltage
is applied, we have a dependable low-power cache (dependable
low-power mode). Consequently, if the cache utilization of
the program and data is 50% or less, we can aggressively
merge lines to achieve high speed or better reliability as well
as energy savings. This motivates us to develop a control
mechanism by investigating the cache utilization.

Let us first define cache utilization as follows:

Cache utili zation ≡ 1

B × T

N∑

i=1

Ui (1)

where Ui denotes the cycles between the i th data block being
filled and the last access time of the data block, N is the
number of data blocks evicted in time period T , and B is
the total number of cache lines. For example, in Fig. 2, data
block A is filled at time 0 and evicted at time 5. The last access
time of cache block A is at time 4. Hence, the data block
utilization of A is 4/5 = 80%. In addition, there are four cache
lines and seven data blocks between the time period 0 and 10.
The total useful time for each data block is the summation
of the time between the filling and the last access time before
eviction of each block, i.e., 4+3+5+2+7+2+1 = 24. The
total time of each block is the number of cache lines times the
time period, 4 × 10 = 40. Thus, the overall cache utilization
is 24/40 = 60%. If the data block utilization is high, the data
block is useful during its lifetime. Otherwise, the data block
does not improve the system performance but only sits idle
and waits to be evicted by the cache controller.

Fig. 3 shows the relationships among cache utilization, μ,
and operation modes of the 435.gromacs example. The two
lines near the top in Fig. 3 are DVFS decisions made by
two schemes, conventional DVFS [26] and ours. The conven-
tional DVFS [26] determines whether the system is running

Fig. 3. Cache utilization and the conventional DVFS decisions
of 435.gromacs.

in normal mode or low-power mode by a weighted value,
while our DVFS framework does so by cache utilization.
The weight is based on the μ values computed by μ =
((C P Icomputat ional)/(C P Iaverage)) [26]. A low μ value indi-
cates that it is more toward a memory-bounded operation.
In this case, we will assign a higher weight to the low-power
mode, and hence, it will guide the controller to switch the
system into low-power mode. For instance, in Fig. 3, the
system switches from normal mode into low-power mode
at 400 to 990 thousand instructions. However, this control
scheme for a conventional cache may raise a reliability issue
when using an ultralow supply voltage due to increasing BERs
of the cache cells.

Now let us consider using a 7T/14T cache. When the cache
utilization is below 50%, we can switch the cache into the
dependable low-power mode for energy savings without losing
reliability by applying low voltage or into the high-speed mode
for performance improvements by applying normal voltage.
However, when the cache utilization is over 50% and running
on the dependable low-power or high-speed modes, the cache
misses will increase due to the 50% capacity reduction of the
cache. This will result in performance loss and also higher
energy consumption. When using the conventional DVFS
control mechanisms, the decision of the operation mode solely
depends on CPIs without considering the cache utilization.
Obviously, it is insufficient to apply the conventional DVFS
control mechanisms to a 7T/14T cache.

As shown in Fig. 3, during the period of 650
to 900 thousand instructions, the cache utilization is higher
than 50%. If a 7T/14T cache is running in low-power mode,
the cache capacity will be reduced by half, which will incur
higher cache misses. Hence, our DVFS scheme switches the
cache from low-power mode to normal mode, as shown in
the line labeled Our DV FS. Now, consider that when the
cache is running in normal mode and the cache utilization is
lower than 50% (e.g., from 1550 to 1690 thousand instructions
in Fig. 3), we can more aggressively switch the system
into high-speed mode for performance improvements. For the
example shown in Fig. 3, we can achieve 23.50% in cache miss
reduction, 14.74% performance improvements, and 20.21%
more energy savings compared with the conventional DVFS
control method [26].

CHEN et al.: NOVEL CACHE-UTILIZATION-BASED DVFS MECHANISM FOR RELIABILITY ENHANCEMENTS 823

Fig. 4. Schematic of SRAM cells. (a) Two 6T SRAM cells. (b) 7T/14T
SRAM cell.

From the above-mentioned observations, it motivates us to
investigate the interrelationship between computational pat-
terns in execution and cache utilization to devise a con-
trol scheme that can effectively switch the cache between
normal, high-speed, and reliable low-power states under an
ultralow supply voltage for energy savings without sacrificing
performance.

IV. SYSTEM ARCHITECTURE

We first introduce the configurable 7T/14T dependable
SRAM cache [1]. Then, we present the system modes and
switching overheads.

A. 7T/14T SRAMs

Fig. 4(a) shows the schematic of two disjoint 6T SRAM
cells. To access the data in the SRAM cell, one has to assert
the corresponding wordline (WL[0] or WL[1]). Since the two
SRAM cells share a single bitline (BL and /BL), the wordlines
of these two SRAM cells (WL[0] and WL[1]) can only be
asserted disjointly. Fig. 4(b) shows the schematic of a 7T/14T
SRAM cell. Fujiwara et al. [1] have demonstrated that 7T/14T
SRAM cells can be aligned in an array the same as the general
6T SRAM cell array. A 7T/14T SRAM cell consists of two
conventional 6T SRAM cells and two additional pMOS tran-
sistors. By using the additional pMOS transistors, the 7T/14T
SRAM can be operated at three different operation modes:
normal mode, dependable low-power mode, and high-speed
mode. In normal mode, a single 7T/14T SRAM cell is operated
as two conventional 6T SRAM cells, and the L1 cache uses
its full capacity. In the dependable low-power and high-speed
modes, two 6T SRAM cells store only a single-bit value and
the cache capacity is reduced to half. In dependable low-power
mode, the 14T cell has a higher static-noise margin [6]. Hence,
the overall SRAM system is much more reliable and able to
tolerate lower system supply voltages. In this case, the CPU
core operates at an ultralow supply voltage to achieve energy
savings. In high-speed mode, the CPU operates at normal
voltage, and high speed is achieved by driving a bitline with
two transistors. In both the dependable low-power and high-
speed modes, the cache sacrifices its capacity to obtain higher

TABLE I

OPERATION MODES OF 7T/14T SRAM CACHE

Fig. 5. Four-way way-variable 7T/14T SRAM cache.

reliability or faster cache access latency. Table I summarizes
the operations, capacity, and supply voltage of the 7T/14T
SRAMs.

Fig. 5 shows an example of a four-way way-variable 7T/14T
SRAM cache. In general, each line in a cache set shares the
same bitlines. Thus, two 6T SRAM cells of a 7T/14T SRAM
cell will be used in adjacent sets. For instance, in Fig. 5,
set 0 and set 1 share the same 7T/14T SRAM cells. In a
regular cache, two 6T SRAM cells operate independently in
two sets, but in a line-merged cache, they will be merged
into one cell, as shown in the red rectangle, and the four-way
cache becomes two-way. In Fig. 5, in order for the wordline
to select sets, the system will designate way 0, way 1 to
set 0 and way 2, way 3 to set 1 in line-merged cache,
as shown in the green rectangle. One may be concerned
that when switching modes from regular cache to line-
merged cache, it will destroy both of the data blocks.
Okumura et al. [32] have addressed this data block loss
problem. They demonstrated that by carefully controlling the
wordline and the two pMOS transistors (the /CT RL signal
in Fig. 4), they can achieve a reliable cache block copy
simultaneously with a delay penalty of four cycles [32]. With
the cache block copy technique, we can assume a 7T/14T
SRAM cache scheme the same as in [33]. When switching
from regular cache to line-merged cache, the 7T/14T SRAM
cache copies way 0, way 1 data of set 0 (regular cache) to
set 0 (line-merged cache), and way 2, way 3 data of set 1
(regular cache) to set 1 (line-merged cache). Note that when
entering line-merged cache, half of the cache blocks will be
destroyed (and need to writeback if they are dirty), while the
other half of the cache blocks will be retained.

B. System Modes

Fig. 6 shows our proposed system architecture in which
all CPU cores have a private L1 cache and share the single
uniform LLC. The system is divided into five separated power

824 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 3, MARCH 2017

Fig. 6. Proposed system architecture.

Fig. 7. System transition diagram.

islands where the voltage-frequency levels can be changed
independently. The level shift registers (LSRs) are required
to provide reliable signal transfers between different power
islands with additional cycle delays. Because the system
performance is sensitive to L1 cache latency, the CPU core
and L1 cache often share the same voltage domain to avoid
the LSR delay [5], [26], [27]. Since DVFS for the CPU core
is usually aggressive, a more reliable SRAM for L1 cache is
needed. Thus, we use the 7T/14T SRAM cells for L1 cache
only and the traditional 6T SRAM for LLC.

In L1 cache, when low CPI and low cache utilization are
detected, the controller will switch the 7T/14T L1 cache to
the dependable low-power mode and evict half of its data
blocks to ensure reliability. When only low utilization of the
7T/14T L1 cache is detected, the controller will switch the
7T/14T L1 cache to high-speed mode to trade its associativity
for faster latency.

Fig. 7 shows the transition diagram of the system that
consists of three switching delays: 1) dirty writeback delay
caused by the eviction of half of the cache blocks; 2) voltage-
frequency scaling delay; and 3) cache block copying delay
caused by simultaneous block copies. When switching from
the normal mode to the dependable low-power mode, it will
incur three delays—cache block copying delay, dirty write-
back delay, and voltage scaling delay—but only the voltage
scaling delay will occur when switching on the other way
around. In addition, only when switching from normal mode
to high-speed mode will cache block copying delay and dirty
writeback delay be incurred. Furthermore, when switching
between dependable low-power mode and high-speed mode,
both will incur voltage scaling delay. In our experiments, we
have observed that most applications do not change phase
frequently. Hence, the switching overhead is negligible and
will not affect overall performance.

Fig. 8. Proposed cache utility-based voltage-frequency scaling mechanism.

Fig. 9. Normalized CPI and energy of low/high MPKI applications.

V. CACHE UTILITY-BASED VOLTAGE-FREQUENCY

SCALING MECHANISM

In this section, we first present the proposed control mech-
anism in Section V-A. Then, in Sections V-B and V-C,
we describe the hardware implementation of the control mech-
anism. Finally, the area and timing overhead analysis is given
in Section V-D.

A. Proposed Control Mechanism

Our proposed control mechanism collects the information of
the computational pattern in a predefined time period. Then,
it uses the information to determine the 7T/14T cache opera-
tion mode of the next time period [34].

Fig. 8 shows the decision flowchart of the proposed control
mechanism. We first use the collected information to determine
whether it is a low CPI and low cache utilization computation.
If it is, then the system enters the dependable low-power mode
for energy savings. Otherwise, we determine whether it is
only low cache utilization. If it is, the system enters the high-
speed mode for performance improvements. This is explained
in detail in the following.

In general, the cache blocks of high miss per kilo instruc-
tions (MPKI) applications do not have much data locality,
which are accessed only once before the eviction, e.g., stream-
ing. Thus, high MPKI applications usually have a low cache
utilization (i.e., less than 50%). In addition, the performance
of a high MPKI computational pattern is also not sensitive to
the CPU core frequency. Fig. 9 shows the CPI and energy

CHEN et al.: NOVEL CACHE-UTILIZATION-BASED DVFS MECHANISM FOR RELIABILITY ENHANCEMENTS 825

comparisons of low and high MPKI applications with the
system running in dependable low-power mode normalized
to those in the normal mode. In Fig. 9, 456.hmmer and
465.tonto are low MPKI applications, and 436.cactusADM
and 470.lbm are high MPKI applications. It shows that when
running on the dependable low-power mode, the CPI of the
low MPKI applications has increased by 65.05% and 56.74%
while the CPI of the high MPKI applications has increased
only 5.25% and 0.18%. Furthermore, the energy savings of
the high MPKI applications are higher than that of the low
MPKI applications due to the performance loss of the low
MPKI applications. From the above-mentioned observations,
we can switch the applications with a high MKPI to the
dependable low-power mode for energy savings. We use a
threshold to determine whether the applications are highly
memory bounded, as shown in Fig. 8. We will discuss the
threshold value in Section VI. Notice that high MPKI implies
low CPI as well as low cache utilization. Hence, we use MPKI
instead of CPI as the metric to determine whether to switch
the system into the dependable low-power mode.

For some low MPKI applications with low cache utilization,
higher driving capability of merged cells can be utilized
to guarantee high performance. For this case, if the cache
utilization is less than 50%, we sacrifice the cache asso-
ciativity for performance by switching the system into the
high-speed mode.

Now, let us consider how to obtain the cache utilization.
Based on (1) in Section III, we need two counters to record
the fill time and the last access time of each cache block.
If we implement these two counters directly for each cache
block, then (2 × the number o f data blocks) counters
are required. It will result in excessive hardware overheads.
To alleviate this problem, we investigate another cache
condition metric, overhead_cycleshal f , for cache utiliza-
tion estimation. Equation (2) shows overhead_cycleshal f

defined as the cycle differences between the full-sized
cache in the normal mode (Cyclescost) and the half-sized
cache in the high-speed mode (Cyclesbenef it), as shown
in (3) and (4). Cyclescost is estimated by the increased L1
miss count, �miss_countL1, times the average L2 cache
latency, avg_cycleL2, while Cyclesbenef it is estimated by the
read/write instruction count, ICrw , times the reduced L1 cache
latency, �cycleL1, as shown in (3) and (4)

Overhead_cycleshal f = Cyclescost − Cyclesbenef it (2)

where

Cyclecost = �miss_countL1 × avg_cycleL2 (3)

and

Cyclebenef it = ICrw × �cycleL1. (4)

The increased L1 miss count, �miss_countL1, is the number
of increased misses when the cache capacity is reduced to half.
These misses will result in L2 accesses. Hence, Cyclecost is
calculated as �miss_countL1×avg_cycleL2. Next, �cycleL1
is the number of cycles that can be saved when the cache
capacity is reduced to half with a normal supply voltage.
All read/write instructions to L1 cache will benefit from this

Fig. 10. Comparisons of the cache utilization of (1) and the
overhead_cycleshal f of (2) of 403.gcc.

cache cycle reduction. Hence, cyclebenef it is calculated as
ICrw × �cycleL1.

We have studied the characteristics of two metrics
of (1) and (2). Fig. 10 shows the relationships between the
cache utilization metric by (1) and the overhead_cycleshal f

by (2). The results show that both metrics have the
same indication. If cache utilization is higher than 50%,
overhead_cycleshal f is positive due to the additional misses
on the L1 cache. Otherwise, if cache utilization is lower
than 50%, overhead_cycleshal f is negative. Consequently, we
can use overhead_cycleshal f to predict whether the cache
utilization is higher or lower than 50%. This greatly simplifies
our implementation that will be discussed in Section V-B.

B. Hardware Implementation

We can directly obtain the average L2 cache access latency,
avg_cycleL2, from the performance monitor counters that
are built into the processors. The reduced L1 cache latency,
�cyclesL1, is given as a cache characteristic [26], while
the read/write instruction count, ICrw , is attainable online.
However, to compute �miss_countL1 an additional hardware,
�miss_counter , is required.

In Section V-C, we discuss how to compute �miss_countL1
in detail, consisting of two cases: regular cache (normal mode)
and line-merged cache (dependable low-power or high-speed
modes), where regular cache and line-merged cache denote
that the L1 cache is in full and half capacity, respectively. The
finite-state machine to implement an LRU replacement policy
is modified to record �miss_countL1. We use the following
examples to explain how to compute �miss_countL1.

Let the cache be four-way set associative. First, in a regular
cache, an LRU sequence of four cache blocks is maintained
by the LRU controller. Fig. 11 shows the LRU sequence
transition examples where the LRU sequence from the most
recently used block to the least recently used block is denoted
as M RU , mru, lru, and L RU , respectively. Let us look at
cases (1) and (2) shown in Fig. 11(a). If the memory request
is a hit to M RU or mru blocks, this request will always
be a hit regardless of the operation mode. In those cases,
the LRU sequence is updated using the original LRU policy.

826 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 3, MARCH 2017

Fig. 11. Examples of LRU sequence and tag location transition. (a) Regular
cache. (b) Line-merged cache.

Next, consider cases (3) and (4). If the memory request is
a hit to the lru or L RU block, it means that this memory
request is a hit in the regular cache but a miss in the line-
merged cache. In those cases, besides updating the LRU
sequence, �miss_counter will be incremented by one to
mimic this cache miss of line-merged cache. Finally, consider
case (5). If the memory request is a miss, it means the
data of this request are not in the cache. In this case, L RU
block will be evicted and replaced by the requested block.
In summary, in normal mode, the increased L1 miss count,
�miss_countL1, is obtained by counting the number of hits
in the lru and L RU blocks.

Second, in a line-merged cache, the LRU controller only
needs to maintain the LRU sequence for half of the tag array.
Let us denote it as hal f _1, as shown in Fig. 11(b). The other
half of the tag array is not used and idle. Let us denote it as
hal f _2, as shown in Fig. 11(b). Since the tag array in hal f _2
is not used, we can use this idle tag array to simulate the situ-
ation of the full-capacity tag array and record �miss_countL1
occurred in the line-merged cache. The only difference is that
the most recently used blocks (M RU and mru blocks) indicate
the blocks in hal f _1 and the least recently used blocks
(lru and L RU blocks) indicate the blocks in hal f _2 under
the line-merged cache. Fig. 11(b) shows the different cases by
using the idle tag array to simulate the full-capacity tag array in
line-merged cache. Consider cases (6) and (7). If the memory
request is a hit to the hal f _1 blocks, it means this request

Fig. 12. Schematic of our proposed four-way tag array.

will always be a hit regardless the operation mode. In those
cases, the LRU sequence is updated using the original LRU
policy. Next, let us look at cases (8) and (9). If the memory
request is a hit to the lru block (the L RU block) in hal f _2,
it means the memory request is a hit in the regular cache but a
miss in the line-merged cache. In those cases, �miss_counter
will be incremented by one to record this cache miss. The
requested block will be fetched to the current location of mru
block from the next level cache and LRU sequence is updated
accordingly. In addition, to keep the LRU information of the
full-capacity tag array, the tag data of the mru block in hal f _1
must be copied into the tag location of the hit block, the lru
block (the L RU block), in hal f _2 by a temporal register,
called tag_bu f f er (will be explained in Section V-C). Finally,
consider case (10). If the request is a miss to L1, it means the
memory request is always a miss in either regular cache or
line-merged cache. In this case, the tag data of mru block in
hal f _1 will be copied into the tag_bu f f er , and then written
to the tag location of current L RU block in hal f _2. Then, the
requested block will be fetched and replace the mru block in
hal f _1. Finally, the LRU sequence is updated accordingly.
In summary, in line-merged cache, the increased L1 miss
count, �miss_countL1, is obtained by counting the number
of hits in the hal f _2.

From the above-mentioned discussion, it can be seen
that due to the reduction of capacity, �miss_countL1 can
be obtained by utilizing the original tag array under the
line-merged cache.

C. Tag Copying

In this section, we present the hardware modification neces-
sary in order to compute the above �miss_countL1. Fig. 12
shows our tag array and its control mechanism of a four-way
tag array. Let us discuss how this architecture operates with a
7T/14T cache. There are three possible cases as follows.

First, the request is a hit or a miss in regular cache or the
request is a hit to the hal f _1 blocks in line-merged cache.
In these cases, the tag array is updated by using the circuit
built in hardware and an LRU policy. For instance, if it is

CHEN et al.: NOVEL CACHE-UTILIZATION-BASED DVFS MECHANISM FOR RELIABILITY ENHANCEMENTS 827

TABLE II

L1 CACHE CONFIGURATIONS

a miss in normal mode, the controller will assert the write
enable signal (the En signal in Fig. 12) of the L RU block and
replace it with the new block. Finally, the controller updates
the LRU sequence accordingly, as shown in cases (1)–(7)
of Fig. 11.

Second, when the system operates in the line-merged
cache and the request is a hit in the hal f _2 blocks.
In this case, before replacing the mru block (i.e., the least
recently used block in hal f _1) with the requested block, the
tag data of the mru block should be copied to the tag location
of the hit block in hal f _2 in the following two steps. First,
the controller stores the mru tag data in hal f _1 into the
tag_bu f f er by using the multiplexer, mux_A in Fig. 12.
Then, the controller can write the tag data in tag_bu f f er to
the designated tag location by mux_B . This write operation
occurs at the same time as the tag data of the requested block
are written to the tag location of the mru block. Finally, the
LRU sequence is updated accordingly as shown in cases (8)
and (9) in Fig. 11.

Third, when the system operates in the line-merged cache
and the request is a miss in hal f _1 and hal f _2 block.
In this case, before replacing the mru block in hal f _1, the tag
data are copied to the tag location of the current L RU block
(i.e., the least recently used block in the hal f _2 blocks) by
the same tag copy.

D. Overhead Analysis

In our proposed architecture, we use the 7T/14T SRAM
cache to implement the L1 data array. Compared with the
traditional 6T SRAM, the area overhead of the 7T/14T SRAM
cache is 16.67% more. On the other hand, compared with
other reliable 8T SRAM designs that support ultralow-voltage
operations [7], the area of the 7T/14T SRAM cache is 12.50%
smaller.

The additional hardware to support our proposed control
mechanism in the tag array includes a �miss_counter ,
a tag_bu f f er , and two multiplexers (mux_A and mux_B),
which are relatively small and do not affect the overall die area.
One may suspect that it may incur additional timing overheads
due to the mru tag copying operation that transfers the tag
data to tag_bu f f er . In fact, this step can be done in one tag
access cycle delay. Furthermore, this tag copying is carried out
when there is a miss and can be performed in parallel with
the data fetching from the next level cache. As a result, there
is no delay overhead for the implementation of our proposed
control mechanism.

VI. ARCHITECTURE EVALUATIONS

In our experiment, we have evaluated the proposed control
mechanism using the GEMS simulator [35] with the Linux
kernel of version 2.6.15. We used the pipelined quad-core
system with per-core DVFS. Table II shows the L1 cache
configurations. Because the cell size of the 7T/14T SRAM
is 16.67% larger than that of the conventional 6T SRAM, we
have scaled the 7T/14T L1 cache size to 32KB to evaluate
the performance and energy criteria under a fixed die area for
cache. Similarly, for reliable caches composed of 8T, 10T,
and 12T SRAM, we have scaled the L1 cache to 28, 24,
and 20 kB, respectively. Moreover, a 2 MB, eight-way associa-
tive, 20 cycle latency LLC, and a 300 cycle latency DRAM
were used in our environment. Other performance penalties
of 7T/14T SRAM cache, including dirty writeback delay and
cache block copying delay (described in Section IV-B), are all
considered in the evaluation.

We have selected 17 applications from SPEC CPU2006
benchmarks [36] and randomly mixed them into 21 workloads.
In addition, we added two workloads with four memory
nonintensive applications (435.gromacs) and four memory
intensive applications (470.lbm), which are mix10 and mix12,
as shown in Table III. Due to limited space, we show only
the results of the first 12 workloads in the figures. The
rest of 11 workloads have similar energy/performance results.
We set the last time period window to 1 million instruc-
tions, which is the same as in the previous work [26], [37].
It is because we have observed from the experiments that
when executing the applications, the system does not fre-
quently change the operation mode. It usually stays in
an operation mode for a long period of tens of million
instructions.

We have performed the evaluations of performance, power
consumption, and reliability of our proposed system. The
performance evaluation was estimated using the weighted
speedup metric proposed by Kim et al. [38] as shown as
follows:

Weighted speedup =
∑

i

C P I alone
i

C P I shared
i

(5)

where C P I alone
i is the CPI of core i when executing the

single application alone on the platform and C P I shared
i is the

CPI of core i when sharing the platform resources with other
applications. In addition, we have used the virtual platform
power model proposed by Bartolini et al. [39] for the energy

828 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 3, MARCH 2017

TABLE III

WORKLOADS

evaluation as shown as follows:

Core energy = (1 − idleness) ∗ Energyact ive

+ idleness ∗ Energyidle (6)

Cache energy = usageaccess ∗ Energyaccess

+ usagestandby ∗ Energystandby. (7)

In (6) and (7), idleness is used to model the deep sleep power
state, Energyact ive and Energyidle are the energy dissipation
in active and idle states, Energyaccess and Energystandby are
the cache energy dissipation in access and standby states,
and usageaccess and usagestandby are the usage of cache in
access and standby states. Furthermore, we used the L1 bit
error count as the reliability metric in our reliability eval-
uation in which the error-rate model of 6T and 7T/14T
SRAM cache was adopted from [1] with a 65-nm process
and 125 °C temperature. A DVFS mechanism proposed by
Dhiman and Rosing [26] was implemented. For compar-
isons, we have performed evaluations for the following
configurations.

1) Base: The conventional configuration using 6T L1 cache
without DVFS for reference.

2) Online DVFS (0.55 and 0.75 V): A DVFS mechanism
using online learning [26] equipped with the given con-
ventional 6T L1 cache configuration using high voltage
(0.8 V) and low voltage (0.55 and 0.75 V).

3) Reliable DVFS (8T, 10T, and 12T): The online DVFS
equipped with scaled 8T, 10T, and 12T reliable L1
cache configurations using high voltage (0.8 V) and low
voltage (0.55 V).

4) CUB-VFS: The proposed cache utility-based voltage-
frequency scaling (CUB-VFS) mechanism using the
7T/14T SRAM cache using high voltage (0.8 V) and
low voltage (0.55 V).

Fig. 13. Average performance/energy comparisons with various MPKI
thresholds on all benchmarks.

A. Selection of MPKI Threshold in Control Mechanism

First, the MPKI threshold used in our control mechanism
shown in Fig. 8 needs to be determined. We show the average
normalized weighted speedup and energy consumption with
various MPKI thresholds to that of the base configuration
on all benchmarks in Fig. 13. Higher MPKI threshold means
the cache stays in full capacity for a longer time. Intuitively,
this will result in better performance with a penalty of more
energy consumption. For the most energy-saving configuration
(the leftmost bar in Fig. 13), our method can achieve 55.46%
energy savings with 21.21% performance penalty. On the other
hand, for the highest performance configuration (the rightmost
bar in Fig. 13), our method achieves a 9.40% performance
improvement with 13.57% more energy consumption. In order
not to sacrifice performance, we select the MPKI threshold
that results in the same performance as the base configura-
tion. From Fig. 13, the performance of the MPKI threshold
equal to 7 is the same as (or slightly better than) the base
configuration. Thus, 7 is selected as the MPKI threshold for
comparisons in the following experiments.

B. Reliability Evaluation

In this section, we compare the reliability of the conven-
tional 6T cache configurations and ours operating at low-
power (0.75 V) and ultralow-power (0.55 V) modes. Fig. 14
shows the total number of error blocks per day. The results
show that, in low-power mode, the online DVFS using the
safe supply voltage (0.75 V) can guarantee reliable operations
(about six errors per day [40]). However, using the near-
threshold voltage, the online DVFS (0.55 V) has very high
error rates. On an average, it results in thousands of error
blocks per day for all the workloads. On the other hand, our
proposed method can achieve the error rate of about two error
blocks per day and thus guarantee reliable operations using
the near-threshold voltage.

Nowadays, modern processors typically are equipped with
SECDED mechanisms [12], [13] to handle unavoidable soft
errors. By using ECC redundant bits, systems can correct
single-bit-error blocks and detect double-bit-error blocks.
In other words, single-bit-error blocks can be safely corrected

CHEN et al.: NOVEL CACHE-UTILIZATION-BASED DVFS MECHANISM FOR RELIABILITY ENHANCEMENTS 829

Fig. 14. Reliability comparisons by error blocks per day.

Fig. 15. Reliability comparisons by double-bit-errors per day.

without any performance overhead while double-bit-error
blocks need roll back and reexecute instructions. Fig. 15 shows
the comparisons of the number of double-bit-error blocks.
Fig. 15 shows that only online DVFS (0.55 V) suffers the
double-bit-error blocks.

Computing the expectation of multiple-bit-error blocks in
ten years is also performed. The results are shown in Fig. 16.
It shows that multiple-bit errors may occur in online DVFS
(0.55 V). Multiple-bit-error blocks cannot be handled by the
typically used SECDED mechanism. Although the probability
of the multiple-bit-error blocks is very small, an error block
may result in an incorrect execution of load instruction.
If it does happen, the load instruction will further affect
other instructions. To understand the effect of an incorrect
load instruction, we have injected a load instruction with a
multiple-bit-error block and recorded the next 100 000 instruc-
tions. Table IV shows the percentage of affected instructions.
By Table IV, 12.97% of the instructions are affected after
running 100 000 instructions. In a safety-critical system, such
as ECU in automotive system and pacemaking system for
health, this type of unreliable operation is not acceptable.

C. Compared With Conventional 6T SRAM Cache
on Performance and Energy

In our line-merged cache, the cache capacity is reduced
to half. In this section, we present the performance/energy

Fig. 16. Expectation of multiple-bit-error blocks in ten years.

TABLE IV

INSTRUCTIONS AFFECTED BY A SINGLE LOAD

INSTRUCTION (462.libquantum)

Fig. 17. Performance comparisons by weighted speedup.

evaluation to understand if the reliability enhancement of our
mechanism sacrifices performance and energy.

Fig. 17 shows the performance comparison. On average, our
proposed method achieves the same performance as the base
configuration and outperforms the online DVFS configurations
by 1.08%.

Fig. 18 shows the energy comparisons of all workloads
normalized to the base configuration. The results show that
our proposed method (CUB-VFS) achieves on average 5.51%,
2.97% more energy savings over the base configuration and
the online DVFS using the safe supply voltage (0.75 V),
and the same amount of energy savings with online DVFS
using the near-threshold supply voltage (0.55 V).

Fig. 19 shows the breakdown of the total energy consump-
tion. Because two 6T SRAM cells operate simultaneously

830 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 3, MARCH 2017

Fig. 18. Energy comparisons normalized to base.

Fig. 19. Energy breakdown.

in line-merged cache, our proposed CUB-VFS consumes
more dynamic energy than the others. However, our proposed
method achieves more energy savings in the CPU core by more
aggressively switching to the lower voltage-frequency mode.
Thus, our overall system still achieves 5.51% energy savings
as compared with the base configuration.

In our proposed architecture, entering line-merged cache
may increase cache misses caused by dirty writeback and the
reduction in capacity. Fig. 20 shows the detailed miss rate
breakdown of our proposed mechanism. Overall, the increased
miss rate caused by the capacity reduction and the writeback
is 0.38% and less than 0.01%, respectively, the latter of which
is too small to be shown in Fig. 20.

D. Compared With Other Reliable Caches

An 8T reliable SRAM cache has been proposed by
Verma and Chandrakasan [7]. They used a sensing network
with multiple sense amplifiers to achieve reliable operations
under the near-threshold voltage. A 10T SRAM cache pro-
posed by Chang et al. [9] utilizes a boosted wordline to ensure
the worst case corner of write operations. Moore et al. [11]
have proposed a 12T SRAM cache, which renounces cell
density to ensure reliable operations under aggressive voltage
scaling. Our reliable 7T/14T SRAM cell is designed by
configuring two 7T cells into one 14T cell. In this section,
we compare our method to other reliable caches in which low-
power mode is operated at 0.55 V.

Fig. 20. Miss rate breakdown in line-merged cache.

Fig. 21. Performance comparison between reliable caches.

Fig. 22. Energy comparison between reliable caches.

Fig. 21 shows that using large reliable SRAM cells may
result in a performance penalty because of capacity reduc-
tion. On the other hand, our proposed CUB-VFS method
can reconfigure itself for different computational patterns.
On an average, it achieves 3.32%, 3.66%, and 4.08% better
performance improvements than those reliable 8T, 10T, and
12T SRAM caches, respectively.

Fig. 22 shows the energy comparison. All reliable SRAM
caches suffer high dynamic energy consumption. In contrast,

CHEN et al.: NOVEL CACHE-UTILIZATION-BASED DVFS MECHANISM FOR RELIABILITY ENHANCEMENTS 831

our method is capable of dynamically adjusting itself under
the computational pattern in execution. From the results, our
proposed CUB-VFS achieves 4.88%, 9.82%, and 14.80% more
energy savings compared with reliable 8T, 10T, and 12T
SRAM caches, respectively.

VII. CONCLUSION

In this paper, we have presented a cache architecture
and a control mechanism for reliability enhancements. Our
proposed cache architecture uses 7T/14T SRAM [1] that
can trade cache capacity for increased reliability as well as
performance improvements under an ultralow supply voltage.
We have investigated cache behaviors and devised a control
mechanism by considering cache utilization. Our proposed
control mechanism can greatly reduce bit-error occurrences
and thus effectively control the cache to operate reliably
without paying any speed or power-consumption penalties.
We have performed a set of evaluations to demonstrate that
our proposed method can outperform the conventional DVFS
methods in reliability, power reduction, and performance.

REFERENCES

[1] H. Fujiwara, S. Okumura, Y. Iguchi, H. Noguchi, H. Kawaguchi, and
M. Yoshimoto, “A dependable SRAM with 7T/14T memory cells,”
IEICE Trans. Electron., vol. E92-C, no. 4, pp. 423–432, 2009.

[2] S. Chede and K. Kulat, “Design overview of processor based implantable
pacemaker,” J. Comput., vol. 3, no. 8, pp. 49–57, 2008.

[3] S. Mittal, “A survey of techniques for improving energy efficiency in
embedded computing systems,” IJCAET, vol. 6, no. 4, pp. 440–459,
2014.

[4] L. Shang, L.-S. Peh, and N. K. Jha, “Dynamic voltage scaling with links
for power optimization of interconnection networks,” in Proc. 9th Int.
Symp. High-Perform. Comput. Archit., 2003, pp. 91–102.

[5] A. K. Mishra, R. Das, S. Eachempati, R. Iyer, N. Vijaykrishnan, and
C. R. Das, “A case for dynamic frequency tuning in on-chip networks,”
in Proc. 42nd Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
New York, NY, USA, Dec. 2009, pp. 292–303.

[6] E. Seevinck, F. J. List, and J. Lohstroh, “Static-noise margin analysis
of MOS SRAM cells,” IEEE J. Solid-State Circuits, vol. 22, no. 5,
pp. 748–754, Oct. 1987.

[7] N. Verma and A. P. Chandrakasan, “A 256 kb 65 nm 8T subthreshold
SRAM employing sense-amplifier redundancy,” IEEE J. Solid-State
Circuits, vol. 43, no. 1, pp. 141–149, Jan. 2008.

[8] M.-H. Tu et al., “A single-ended disturb-free 9T subthreshold SRAM
with cross-point data-aware write word-line structure, negative bit-line,
and adaptive read operation timing tracing,” IEEE J. Solid-State Circuits,
vol. 47, no. 6, pp. 1469–1482, Jun. 2012.

[9] I. J. Chang, J.-J. Kim, S. P. Park, and K. Roy, “A 32 kb 10T subthreshold
SRAM array with bit-interleaving and differential read scheme in 90 nm
CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), Dig. Tech,
Papers, San Francisco, CA, USA, Feb. 2008, pp. 388–389.

[10] Y.-W. Chiu et al., “40 nm bit-interleaving 12T subthreshold SRAM
with data-aware write-assist,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 61, no. 9, pp. 2578–2585, Sep. 2014.

[11] C. D. Moore, S. J. Keller, and A. J. Martin, “Ultra-low-power variation-
tolerant radiation-hardened cache design,” U.S. Patent 8 605 516,
Dec. 10, 2013.

[12] K. Reick et al., “Fault-tolerant design of the IBM Power6 microproces-
sor,” IEEE Micro, vol. 28, no. 2, pp. 30–38, Mar. 2008.

[13] M. K. Qureshi and Z. Chishti, “Operating SECDED-based caches at
ultra-low voltage with FLAIR,” in Proc. 43rd Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Netw. (DSN), Budapest, Hungary, Jun. 2013, pp. 1–11.

[14] Z. Chishti, A. R. Alameldeen, C. Wilkerson, W. Wu, and
S.-L. Lu, “Improving cache lifetime reliability at ultra-low voltages,”
in Proc. 42nd Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
New York, NY, USA, Dec. 2009, pp. 89–99.

[15] A. R. Alameldeen, I. Wagner, Z. Chishti, W. Wu, C. Wilkerson, and
S.-L. Lu, “Energy-efficient cache design using variable-strength error-
correcting codes,” in Proc. 38th Int. Symp. Comput. Archit. (ISCA),
San Jose, CA, USA, Jun. 2011, pp. 461–472.

[16] M. Zhang, V. M. Stojanovic, and P. Ampadu, “Reliable ultra-low-voltage
cache design for many-core systems,” IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 59, no. 12, pp. 858–862, Dec. 2012.

[17] A. Chakraborty, H. Homayoun, A. Khajeh, N. Dutt, A. Eltawil, and
F. Kurdahi, “E < MC2: Less energy through multi-copy cache,” in Proc.
Int. Conf. Compil., Archit., Synth. Embedded Syst. (CASES), Scottsdale,
AZ, USA, Oct. 2010, pp. 237–246.

[18] G. Yalcin, A. Seyedi, O. S. Unsal, and A. Cristal, “Flexicache: Highly
reliable and low power cache under supply voltage scaling,” in High
Performance Computing (Communications in Computer and Information
Science), vol. 485, G. Hernández et al., Eds. Valparaíso, Chile: Springer,
Oct. 2014, pp. 173–190.

[19] J. Abella, J. Carretero, P. Chaparro, X. Vera, and A. González, “Low
vccmin fault-tolerant cache with highly predictable performance,” in
Proc. 42st Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO-42),
New York, NY, USA, Dec. 2009, pp. 111–121.

[20] A. Ansari, S. Feng, S. Gupta, and S. Mahlke, “Archipelago: A polymor-
phic cache design for enabling robust near-threshold operation,” in Proc.
Int. Symp. High Perform. Comput. Archit., Feb. 2011, pp. 539–550.

[21] T. Mahmood, S. Kim, and S. Hong, “Macho: A failure model-oriented
adaptive cache architecture to enable near-threshold voltage scaling,” in
Proc. Int. Symp. High Perform. Comput. Archit., 2013, pp. 532–541.

[22] A. Sasan, H. Homayoun, A. M. Eltawil, and F. Kurdahi, “Inquisitive
defect cache: A means of combating manufacturing induced process
variation,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19,
no. 9, pp. 1597–1609, Sep. 2011.

[23] F. Hijaz, Q. Shi, and O. Khan, “A private level-1 cache architecture
to exploit the latency and capacity tradeoffs in multicores operating
at near-threshold voltages,” in Proc. IEEE 31st Int. Conf. Comput.
Design (ICCD), Asheville, NC, USA, Oct. 2013, pp. 85–92.

[24] G. Magklis, M. L. Scott, G. Semeraro, D. H. Albonesi, and S. Dropsho,
“Profile-based dynamic voltage and frequency scaling for a multiple
clock domain microprocessor,” in Proc. 30th Annu. Int. Symp. Comput.
Archit. (ISCA), New York, NY, USA, 2003, pp. 14–27.

[25] C. Isci, G. Contreras, and M. Martonosi, “Live, runtime phase monitor-
ing and prediction on real systems with application to dynamic power
management,” in Proc. 39th Annu. IEEE/ACM Int. Symp. Microarchi-
tecture (MICRO), Washington, DC, USA, Dec. 2006, pp. 359–370.

[26] G. Dhiman and T. S. Rosing, “Dynamic voltage frequency scaling for
multi-tasking systems using online learning,” in Proc. Int. Symp. Low
Power Electron. Design, Portland, OR, USA, Aug. 2007, pp. 207–212.

[27] X. Chen et al., “In-network monitoring and control policy for DVFS
of CMP networks-on-chip and last level caches,” ACM Trans. Design
Autom. Electron. Syst., vol. 18, no. 4, Oct. 2013, Art. no. 47.

[28] C. Poellabauer, L. Singleton, and K. Schwan, “Feedback-based dynamic
voltage and frequency scaling for memory-bound real-time applica-
tions,” in Proc. 11th IEEE Real Time Embedded Technol. Appl. Symp.,
Mar. 2005, pp. 234–243.

[29] X. Fu, K. Kabir, and X. Wang, “Cache-aware utilization control
for energy efficiency in multi-core real-time systems,” in Proc. 23rd
Euromicro Conf. Real-Time Syst. (ECRTS), Porto, Portugal, Jul. 2011,
pp. 102–111.

[30] T. Suzuki, Y. Yamagami, I. Hatanaka, A. Shibayama, H. Akamatsu,
and H. Yamauchi, “A sub-0.5-V operating embedded SRAM featuring
a multi-bit-error-immune hidden-ECC scheme,” IEEE J. Solid-State
Circuits, vol. 41, no. 1, pp. 152–160, Jan. 2006.

[31] C.-H. Chen and A. K. Somani, “Fault-containment in cache memories
for TMR redundant processor systems,” IEEE Trans. Comput., vol. 48,
no. 4, pp. 386–397, Apr. 2002.

[32] S. Okumura, S. Yoshimoto, K. Yamaguchi, Y. Nakata, H. Kawaguchi,
and M. Yoshimoto, “7T SRAM enabling low-energy simultaneous block
copy,” in Proc. IEEE Custom Integr. Circuits Conf. (CICC), San Jose,
CA, USA, Sep. 2010, pp. 1–4.

[33] J. Jung, Y. Nakata, S. Okumura, H. Kawaguchi, and M. Yoshimoto,
“Reconfiguring cache associativity: Adaptive cache design for wide-
range reliable low-voltage operation using 7T/14T SRAM,” IEICE
Trans. Electron., vol. E96-C, no. 4, pp. 528–537, 2013.

[34] H. Cook, M. Moretó, S. Bird, K. Dao, D. A. Patterson, and K. Asanovic,
“A hardware evaluation of cache partitioning to improve utilization
and energy-efficiency while preserving responsiveness,” in Proc. 40th
Annu. Int. Symp. Comput. Archit. (ISCA), Tel Aviv, Israel, Jun. 2013,
pp. 308–319.

[35] M. M. K. Martin et al., “Multifacet’s general execution-driven multi-
processor simulator (GEMS) toolset,” ACM SIGARCH Comput. Archit.
News, vol. 33, no. 4, pp. 92–99, 2005.

832 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 3, MARCH 2017

[36] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH Comput. Archit. News, vol. 34, no. 4, pp. 1–17, 2006.

[37] R. David, P. Bogdan, and R. Marculescu, “Dynamic power management
for multicores: Case study using the Intel SCC,” in Proc. Int. Conf. VLSI
Syst.-Chip, 2012, pp. 147–152.

[38] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter,
“Thread cluster memory scheduling: Exploiting differences in mem-
ory access behavior,” in Proc. 43rd Annu. IEEE/ACM Int. Symp.
Microarchitecture (MICRO), Washington, DC, USA, Dec. 2010,
pp. 65–76.

[39] A. Bartolini, M. Cacciari, A. Tilli, L. Benini, and M. Gries,
“A virtual platform environment for exploring power, thermal and reli-
ability management control strategies in high-performance multicores,”
in Proc. 20th Symp. Great Lakes Symp. VLSI (GLSVLSI), New York,
NY, USA, 2010, pp. 311–316.

[40] Y. Nakata, S. Okumura, H. Kawaguchi, and M. Yoshimoto,
“0.5-V operation variation-aware word-enhancing cache architecture
using 7T/14T hybrid SRAM,” in Proc. 16th ACM/IEEE Int. Symp. Low
Power Electron. Design (ISLPED), New York, NY, USA, Aug. 2010,
pp. 219–224.

Yen-Hao Chen received the B.S. degree in computer
science and engineering from Yuan Ze University,
Taoyuan, Taiwan, in 2012, and the M.S. degree in
computer science from National Tsing Hua Univer-
sity, Hsinshu, Taiwan, in 2014, where he is currently
pursuing the Ph.D. degree with the Department of
Computer Science.

His current research interests include physical
design automation and computer architecture.

Yi-Lun Tang received the B.S. and M.S. degrees
in computer science from National Tsing Hua Uni-
versity, Hsinchu, Taiwan, in 2013 and 2015, respec-
tively.

He is currently with Novatek, Hsinchu. His current
research interests include computer architecture.

Yi-Yu Liu received the B.S. degree in physics, and
the M.S. and the Ph.D. degrees in computer sci-
ence from National Tsing Hua University, Hsinchu,
Taiwan, in 1997, 2000, and 2006, respectively.

He is currently an Associate Professor with the
Department of Computer Science and Engineering,
Yuan Ze University, Taoyuan, Taiwan. His cur-
rent research interests include technology dependent
logic synthesis, physical design automation, and
computer architecture.

Allen C.-H. Wu received the B.S. degree in elec-
tronic engineering from the Taiwan Institute of Tech-
nology, Taipei, Taiwan, in 1983, the M.S. degree
in electrical and computer engineering from The
University of Arizona, Tucson, AZ, USA, in 1985,
and the Ph.D. degree in computer science from the
University of California at Irvine, Irvine, CA, USA,
in 1992.

From 1992 to 2006, he was a Professor with the
Department of Computer Science, National Tsing
Hua University, Hsinchu, Taiwan. He is currently

a Visiting Professor with the School of Digital Media, Jiangnan University,
Wuxi, China.

TingTing Hwang received the M.S. and
Ph.D. degrees in computer science from
Pennsylvania State University, University Park, PA,
USA, in 1986 and 1990, respectively.

She is currently a Professor with the Department of
Computer Science, National Tsing Hua University,
Hsinchu, Taiwan. Her current research interests
include logic synthesis/optimization and high-level
synthesis.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

