
Crosstalk-aware TSV-buffer Insertion in 3D IC

Yen-Hao Chen Po-Chen Huang Fu-Wei Chen
yhchen@cs.nthu.edu.tw s101062551@m101.nthu.edu.tw fwchen@cs.nthu.edu.tw

Allen C.-H. Wu TingTing Hwang
allenwuuw@gmail.com tingting@cs.nthu.edu.tw

Department of Computer Science, National Tsing Hua University, Taiwan

ABSTRACT

3D integration is one of the promising technologies to alleviate
interconnection delay. Implementing 3D IC is to integrate 2D ICs
with Through-Silicon Vias (TSVs). For yield consideration, TSVs are
bundled together as a TSV block [1]. Regrettably, this placement
will result in crosstalk coupling noises in TSV block, which may
cause significant timing degradation. Traditionally, buffer sizing is
one of the effective methods to solve the problem. However, we
have observed that increasing the TSV-buffer size of aggressor TSV
will cause serious timing degradation to the victim TSV in 3D than
wires in 2D cases. In this paper, we develop a delay model of a
victim TSV surrounded by aggressor TSVs with different driving TSV-
buffer sizes. Based on the TSV delay model, we propose (1) an ILP
(Integer Linear Programming) method, which is able to find the near-
optimal solution, and (2) an efficient crosstalk-aware heuristic method
for practical use. Our experimental results show that the proposed
heuristic method only uses 2.56% (3.05%) more TSV-buffers compared
to the optimal ILP solution and achieves on average 32.88% (42.40%)
and 18.21% (23.06%) area reduction of area-overheads compared to
the conventional greedy [2] and separator sets [3] methods in our
2-tier (4-tier) benchmark circuits.

I. INTRODUCTION

With the shrinking process technology, the interconnection delay
becomes the dominant factor of circuit performance. The Three-
Dimensional Integrated Circuit (3D IC) is a promising technology
to alleviate interconnection delay in VLSI or even larger scale
integrations. Among others, Through-Silicon Vias (TSVs) connecting
signals in different tiers is the key technology. Long global wires in 2D
IC can be shortened by passing through TSVs with 3D integration.
Hence, the wire delay and power consumption can significantly be
reduced. Moreover, 3D IC technology gives more design flexibility
by heterogeneous integration [1].

For yield consideration, TSVs are usually bundled together as a
TSV block [1] rather than isolated and spread in the whole plane. In
a TSV block, TSVs are placed regularly as an array [1]. Regrettably,
this placement will result in serious coupling noises for a victim TSV
from surrounding aggressor TSVs. Due to large dimension of a TSV,
hence large coupling noise caused by nearby TSVs, signal integrity
issues in 3D IC are more critical than 2D IC [4]. The coupling
noise may significantly degrade circuit performance and even result in
wrong logic functionality [5]. Previous study has shown that coupling
effects are from TSV-to-TSV coupling, TSV-to-device coupling, and
TSV landing pad to device coupling. Among the above three coupling
effects, TSV-to-TSV coupling is the major contributor [6].

Several techniques have been proposed to reduce the TSV-to-TSV
coupling effect. In Liu et al. [6] work, TSV spacing, TSV shielding,
and buffer inserting are shown to improve signal integrity and timing
effectively. Among all these techniques, it is also shown that buffer
insertion is the most practical one due to less area overhead. However,
no specific buffer sizing method was proposed in these papers. The
study in [7] focuses on data coding to avoid transmitting patterns
causing crosstalk. However, it often incurs significant overhead of
encoder, decoder and extra TSVs.

In this paper, we propose a buffer insertion method to solve the
crosstalk problem of TSVs in 3D IC. We observe that a large size
of driving buffer of TSV will cause serious timing degradation to
neighboring TSV in 3D than wires in 2D. Our method will take
mutual effect of TSV-to-TSV coupling noise into consideration. We
develop a delay model of victim TSV surrounding by aggressor TSVs
considering different sizes of driving buffers. Then, ILP based and
crosstalk-aware heuristic buffer insertion methods are proposed to
select the most suitable buffer size so that timing constraint is satisfied.

The rest of this paper is organized as follows. In Section II, we
introduce our motivation. Section III defines our problem and Section
IV presents our derived equation and proposed method. Section V
shows our experimental results. Finally, we conclude this paper in
Section VI.

II. MOTIVATION

A. Timing Effect of Up-sizing Buffer

In the 2D model, simply up-sizing the buffer of victim can
effectively solve the timing violation of victim wire due to crosstalk.
The up-sizing of victim wire often slightly degrades the performance
of its neighboring wires. However, signals in TSV block will affect
each other significantly. A sized-buffer of a victim TSV may become
a serious aggressor of its neighboring wires.

Our observation on the delay model of victim wire in 2D and victim
TSV in 3D shows that the coupling capacitance of two TSVs is much
larger than that of two wires. Hence, a victim TSV is more sensitive
to the buffer size of its aggressor [4]. We use the following experiment
to demonstrate that buffer sizing affects victim wire differently in 2D
and 3D cases. We compare the transition delay of victim wire in 2D
and victim TSV in 3D with the same length but with different buffer
sizes of neighboring aggressor by SPICE simulation. The simulation
setup is as follows. The crosstalk models [6], [8] shown in Figure 1
are adopted for wires in 2D and TSVs in 3D. Both lengths of wire
and TSV segments are 80um. (Detailed experimental parameters will
be given in Section V.)

������������	����
��
�������������� 400

20
19

 3
2n

d
IE

E
E

 I
nt

er
na

tio
na

l S
ys

te
m

-o
n-

C
hi

p
C

on
fe

re
nc

e
(S

O
C

C
)

97
8-

1-
72

81
-3

48
3-

3/
20

/$
31

.0
0

©
20

20
 I

E
E

E
 1

0.
11

09
/S

O
C

C
46

98
8.

20
19

.1
57

05
39

11
1

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 29,2020 at 00:36:33 UTC from IEEE Xplore. Restrictions apply.

Wire
TSV TSV

Fig. 1: The 2D and 3D crosstalk models

In our SPICE simulation, we consider the worst case transitions of
victim wire in 2D and TSV in 3D, where all aggressor signals are
switching in opposite direction to the victim signal. In the 2D case, a
victim wire is affected by two adjacent wires in the same planar. In
3D case, we consider four adjacent TSVs as aggressors, because they
contribute most of the coupling effect [5]–[8]. We set the buffer size
of victim as 8x and observe the timing degradation of victim when
buffer sizes of aggressors are increased from 2x to 8x. Simulation
results are shown in Figure 2. The timing of victim surrounded by
aggressors with 2x buffer size is set as baseline. From this figure,
we observe that when the buffer size of aggressors is 4x, the timing
degradation is 8.77% in 2D case while it is 22.61% in 3D case. When
the buffer size is increased to 8x, the degradations are 14.44% in 2D
case and 31.12% in 3D case, respectively. It has shown that the timing
degradation of TSV in 3D is much larger than the wire in 2D.

0.00%

8.77%

14.44%

0.00%

22.61%

31.12%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

2x 4x 8x

Ti
m

in
g

de
gr

ad
at

io
n

(%
)

Aggressors buffer size

Timing degradation

2D crosstalk 3D crosstalk

Fig. 2: Timing degradation of different buffer size of aggressors

B. Motivation Example

The study in [6] showed that buffer insertion can reduce path
delay significantly by reducing victim driving port impedance in
3D IC. Regrettably, in a TSV block [1], TSVs often affect each
other significantly. A victim TSV may become a serious aggressor
to adjacent TSVs. Figure 3 shows our observation. Five TSVs with
different buffer sizes are shown in Figure 3(a). Let timing constraint
be 500ps, TSV A the most critical TSV with delay 530ps, TSV B the
second critical TSV with delay 495ps, and others non-critical. If the
buffer size of TSV A is increased from 4x to 8x to meet the timing
constraint as shown in Figure 3(b), the delay of TSV A is significantly
reduced by 250.33ps, and TSV A becomes a non-critical TSV with
delay 279.67ps. However, TSV A also becomes a serious aggressor
of TSV B. In this case, the timing of TSV B is increased by 8.23ps,
and TSV B becomes the most critical TSV with delay 503.23ps.
Thus, the timing constraint of 500ps cannot be satisfied by up-sizing
TSV A. A better solution can be taking the coupling effect between
TSVs into consideration as shown in Figure 3(c), where we down-size
buffer sizes of surrounding TSVs to 2x. By doing so, the delay of
TSV A is decreased by 40.61ps, and TSV A becomes a non-critical

TSV with delay by 489.39ps. Furthermore, no other critical TSV is
introduced, and the timing constraint of the whole circuit is satisfied.

(a) Initial buffer size (b) Up-sizing
critical TSV

(c) Down-sizing
surrounding TSVs

Non-critical TSV

Second critical TSV

Critical TSV

Fig. 3: An example of crosstalk effect on TSVs

III. DESIGN FLOW AND PROBLEM FORMULATION OF
TSV-BUFFER SIZING PROBLEM

A. Global Flow

The global flow is shown in Figure 4. Given a circuit, firstly, 3D
partitioning and floorplanning are performed to decide the location of
blocks. After that, TSV blocks, i.e. array of TSVs [1], are allocated in
the white space among blocks, and TSVs are assigned to TSV blocks.
Then, unit-sized TSV driving buffers are inserted. After the above
steps, our buffer sizing method for timing optimization is performed.
If the buffer sizing method cannot find a solution to meet the timing
constraint, a timing failure is reported. Otherwise, a circuit satisfying
timing constraint is found. In this paper, our problem focuses on the
timing optimization by TSV-buffer sizing stage.

1. 3D partitioning/floorplanning
2. TSV block allocation/assignment
3. TSV-buffer insertion/initialization

Timing constraint satisfied?

Input

Output

Timing failure

Timing optimization by TSV-buffer sizing

no

yes

Fig. 4: The global flow diagram

B. Problem Formulation for TSV-buffer Sizing

The input to our problem, i.e. the step of timing optimization by
TSV-buffer sizing, is a Directed Acyclic Graph (DAG), G(V,E),
representing the circuit. Node set V includes all primary inputs PI ,
primary outputs PO, blocks BLK, and TSVs TSV , i.e. V = PI +
PO+BLK+TSV . Also, edge set E presents the connecting wires
of the circuit. In addition, each node or edge has a corresponding
delay value representing I/O pad delay, block delay, TSV delay, or
wire delay.

The problem can be formulated as follows. Let the set of possible
TSV driving buffer sizes be SIZE, and the area of an s-sized
TSV-buffer denoted as areas. Also, one-hot encoding is adopted to
represent the size of TSV-buffer. Given a TSV t, binary variable nt

s

is one if and only if TSV t uses an s-sized TSV-buffer, otherwise nt
s

is zero, ∀t ∈ TSV . The objective of our problem is to minimize the
total TSV-buffer area under timing constraint as shown in Equation
(1).

Minimize :
∑

t∈TSV

∑
s∈SIZE

areas × nt
s

s.t. delay(out) ≤ timing constraint,∀out ∈ PO

(1)

401

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 29,2020 at 00:36:33 UTC from IEEE Xplore. Restrictions apply.

The delay of node n is calculated as shown in Equation (2).

delay(n)

= max
p∈predn

{delay(p) + edge delay(p, n) + node delay(n)} (2)

The predn represents all predecessors of n. The delay(p) represents
the delay of predecessor, p. The wire delay, edge delay(p, n),
is proportional to the hamming distance between nodes, i.e.
edge delay(p, n) = unit wire delay × wire lengthp,n The
node delay(n) represents the I/O pad delay, block delay, and TSV
delay. The I/O pad and block delay are given. For simplicity, we
assume no I/O pad and block delay in this paper.

When a node, n, is a TSV, the computation of node delay,
delay(n), requires to take crosstalk into consideration. To obtain
the TSV delay model considering crosstalk effect, we perform a
comprehensive SPICE simulation for the TSV delay model discus-
sed in Section II-A. In this paper, we only consider the crosstalk
effect caused by the neighboring TSVs, because they contribute
the largest portion of crosstalk effect [5]–[8]. Thus, there are four
cases, where a victim TSV is surrounded by one, two, three, and
four neighboring TSVs (or aggressor TSVs) as shown in Figure
5(a), (b), (c), and (d), respectively. The SPICE simulation results
are recorded in a table, Delay Table(sizev, SIZEa). In this table,
sizev and SIZEa represent the buffer size of victim TSV, v,
and the set of buffer sizes of aggressor TSVs. Table I shows a
demonstration of Delay Table(sizev, SIZEa). Take Figure 5(d) as
an example. If a victim TSV, v, with 4x buffer size is surrounded
by four aggressor TSVs with 2x, 2x, 4x, and 8x buffer sizes.
The delay of the victim TSV can be referenced by sizev = 4x
and SIZEa = {2x, 2x, 4x, 8x} in the table, i.e. 517.52ps. The
size of the Delay Table(sizev, SIZEa) is computed as follows.
The number of rows is the total number of possible victim TSV
buffer sizes, i.e. |SIZE|. Also, let i be the number of aggressor
TSVs, where i ∈ {1, 2, 3, 4}. Then, the total possible number
of combinations of aggressor TSVs is H

|SIZE|
i . Hence, the total

number of columns is
4∑

i=1

H
|SIZE|
i . Therefore, the overall size of

the Delay Table(sizev, SIZEa) is |SIZE| ×
4∑

i=1

H
|SIZE|
i .

Victim Victim Victim Victim

(a) (b) (c) (d)

Fig. 5: A victim TSV surrounded by aggressor TSVs
TABLE I: A demonstration of the delay table

SIZEa

(ps) {2x} ... {2x, 4x} ... {2x, 2x, 4x, 8x} ...

sizev

2x 490.24 ... 726.9 ... 1285.1 ...
4x 221.16 ... 313.78 ... 517.52 ...
8x 112.11 ... 146.25 ... 223.51 ...
...

IV. TSV-BUFFER SIZING ALGORITHMS

This section presents our area optimization methods by TSV-buffer
sizing under a timing constraint. Section IV-A shows an Integer Linear
Programming (ILP) method, follows by a Crosstalk-Aware Heuristic
(CAH) method in Section IV-B.

A. ILP Method and Linear Delay Model

The first attempt is to use ILP to find the optimal solutions to the
problems formulated in Section III. First, TSV delay in Equation (2)
is modeled non-linear as shown in the example of Table I. Hence, we
need to develop linear equations to approximate the delay of victim
TSVs with minimal deviation from the SPICE simulation results. The
linear delay equation of victim TSV v without any aggressor TSV is
modeled in Equation (3).

TSV delay(v) =
∑

s∈SIZE

resis0s · nv
s (3)

In Equation (3), binary variables, nv
s , ∀s ∈ SIZE, indicate the buffer

size of victim TSV v, in which one and only one of them will
be 1 and the others will be 0, i.e. one-hot encoding. In addition,
coefficient, resis0s, represents the resistance delay when using an s-
sized buffer. In this case, without any aggressor TSV, resis0s can be
directly obtained from SPICE simulation without any deviation. On
the other hand, the linear delay equation of victim TSV v surrounded
by N aggs aggressor TSVs is modeled in Equation (4), where
N aggs ∈ {1, 2, 3, 4}.

TSV delay(v)

=
∑

s∈SIZE

resisN aggs
s · nv

s +

N aggs∑
i=1

∑
s∈SIZE

crossN aggs
s · nai

s

=
∑

s∈SIZE

resisN aggs
s · nv

s +
∑

s∈SIZE

crossN aggs
s ·N aggsvs

(4)

In Equation (4), binary variables, nai
s , ∀s ∈ SIZE, indicate the

buffer size of aggressor TSV ai. Similarly, given any aggressor TSV
ai, exactly one of the binary variables, nai

s , ∀s ∈ SIZE, will be
1 and the others will be 0. Also, integer N aggsvs is the total
number of aggressor TSVs with s-sized buffers of the victim TSV
v, i.e. N aggsvs = |{ai|nai

s = 1}|. In addition, the coefficient,
crossN aggs

s , represents crosstalk delay from an aggressor TSV with
s-sized buffer, when the victim TSV is surrounded by N aggs
aggressor TSVs. Those linear equations, TSV delay(v), will be used
by ILP to compute TSV delays.

To find the values of all coefficients resisN aggs
s and crossN aggs

s ,
we use the linear regression method to approximate the SPICE
simulation results with minimal deviation. First, the deviation (or loss
function) is defined in Equation (5).

1

2

∑
sizev

SIZEa

(TSV delay(v)−Delay Table(sizev, SIZEa))2 (5)

Equation (6) shows the equivalent deviation matrix form.

1

2
(nTd−D)2,

where n =

⎡
⎢⎢⎢⎢⎢⎢⎣

... nv
s1 ...

... nv
s2 ...

...

... N aggsvs1 ...

... N aggsvs2 ...

...

⎤
⎥⎥⎥⎥⎥⎥⎦
,d =

⎡
⎢⎢⎢⎢⎢⎢⎣

resisN aggs
s1

resisN aggs
s2

...
crossN aggs

s1

crossN aggs
s2

...

⎤
⎥⎥⎥⎥⎥⎥⎦
,

and D =

⎡
⎣ ...
Delay Table(sizev, SIZEa)

...

⎤
⎦

(6)

402

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 29,2020 at 00:36:33 UTC from IEEE Xplore. Restrictions apply.

The matrix n and the vector D are known constants, while d is the
required vector. Minimal deviation can be easily derived by taking
first derivative of Equation (6) w.r.t. vector d and letting it be zero.

d = (nnT)−1nD (7)

Notice that the delay model of victim TSVs surrounded with different
number of aggressor TSVs are separately modeled in different linear
systems, i.e. different values of N aggs ∈ {1, 2, 3, 4}. By this
modeling, we compute the coefficients and compare the linear model
with the SPICE simulation results. We found that the maximum error
rate of the obtained linear equations is only 4.27%. With the above
linear delay model, TSV delay(n), we can rewrite Equation (1) and
(2) into following integer linear equations.

Minimize :
∑

t∈TSV

∑
s∈SIZE

areas × nt
s

s.t. timing constraint ≥ delayn

≥
{
delayp + edge delayp,n + TSV delay(n), if n ∈ TSV

delayp + edge delayp,n, otherwise

≥ 0, ∀node n, ∀p ∈ predn,
(8)

where delayn represents the delay of node n, edge delayp,n the wire
delay between nodes p and n. Finally, we can use an ILP solver to
find the optimal solution with minimal TSV-buffer area.

B. Crosstalk-aware Heuristic Method (CAH)
Although the proposed ILP method can find the optimal solution for

the buffer sizing problem. However, ILP is an NP-complete problem.
As the number of binary variables (i.e. the number of TSVs in the
circuit) increases, the execution time grows exponentially. Also, ILP
requires excessive execution time for a circuit when a tight timing
constraint is given.

The greedy method [2] is one of the most widely used heuristic
method for 2D buffer sizing. It cautiously finds the most critical
node to up-size by analysing the delay model of the circuit. Since
each buffer size is based on a complete delay analysis, it can easily
apply complex delay model considering multiple different physical
and chemical effects. However, improving a single most critical node
does not necessarily mean the overall critical paths of the circuit can
be improved. Another commonly used method for 2D buffer sizing
is the min-cut method. Instead of up-sizing a single critical node in
each iteration, it applies a min-cut algorithm to find a minimum set
of nodes to improve all critical paths at the same time. Usually, a
min-cut method may converge faster than the greedy method on a
large circuit. More importantly, min-cut methods have a global view
on the critical paths which may find a better solution in a general
sense. However, conventional min-cut methods do not consider the
crosstalk effect of TSVs in 3D IC.

N
eighbor

Fig. 6: An example of neighboring TSV selection

With the complex TSV crosstalk effect to be considered in the
delay model as shown in Section II-A, it is very difficult to predict
the complex TSV crosstalk effect when up-sizing various TSV-buffers

Timing constraint satisfied?

Input

Output

no

yes

Graph modeling

1. Graph transformation
2. Padding node insertion
3. Crosstalk exclusive selection

Min-cut algorithm

Upsizing min-cut set

Crosstalk-aware refinement

Fig. 7: The flow diagram

simultaneously. In addition, the crosstalk effect is based on the
physical location of TSVs, which makes it difficult to model the
crosstalk effect into the min-cut cost function. For example, the min-
cut method may select A and B two TSVs for up-sizing as shown
in Figure 6. If these two TSVs are far apart, the timing and area are
correctly modeled and the selection can result in timing reduction.
However, if these two TSVs are physically neighboring TSVs, it may
even aggravate the crosstalk effect. The timing impact by up-sizing
cannot reflect the crosstalk effect.

With the above observations, we are going to present our method
based on the min-cut algorithm to solve the TSV-buffer sizing problem
by considering neighboring effect.

Figure 7 shows the flow diagram of our method. First, the circuit
is analysed by the crosstalk delay model and checked whether the
timing constraint is satisfied. If not, the graph modeling stage will be
performed for critical path extraction, which consists of three steps,
i.e. graph transformation, padding node insertion [3], and crosstalk
exclusive selection. After extracting the critical paths, we can use the
min-cut algorithm to find the minimum cut set of the critical paths
and up-size TSV-buffers of the cut set to the original circuit. This loop
is iterated until the timing constraint of the circuit is satisfied. Lastly,
we will perform the crosstalk-aware refinement to further reduce the
area, which will be discussed later. The main steps that consider the
3D crosstalk effect are the crosstalk exclusive selection of the graph
modeling stage and the crosstalk-aware refinement stage.

TSV Block
4
4

3
3

3
3

2
2
2
2

2
2

Fig. 8: An example of graph transformation
First, only TSV nodes are valid nodes as buffer sizing candidates.

If we directly apply DAG of 3D circuit by the min-cut algorithm,
it may find a set with unsizable nodes, i.e. block nodes. Figure 8
shows an example of DAG of 3D circuit on the left hand side where
circles are TSV nodes and squares are block nodes. By the figure,
the min-cut algorithm will choose block b to up-size, since it is the
smallest cut set to optimize the whole circuit. To avoid the min-cut
algorithm cutting at block nodes, a DAG transformation is applied.
The block nodes in the original graph are removed. Also, a new edge
of two TSV nodes is added, if there is a path of block nodes between
two TSV nodes. In addition, the delay value of the new edge is the
longest path delay of block nodes between the two TSV nodes. Figure
8 shows an example of this representation transformation. Notice that

403

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 29,2020 at 00:36:33 UTC from IEEE Xplore. Restrictions apply.

this graph transformation is still equivalent to the original graph.
The total number of nodes is reduced after the transformation. More
importantly, each node on the new graph represents a valid buffer
sizing candidate, which can easily apply the min-cut algorithm.

The padding node insertion technique proposed by Y. Tamiya [3]
is adopted in our method. Y. Tamiya found that using the min-
cut method to 2D buffer sizing problem directly might result in
suboptimal solution [3]. Thus, they proposed to insert padding nodes
on non-critical edges of the circuit and iteratively perform the min-cut
algorithm to find several min-cut sets, so called separator sets. By the
paper [3], if an edge e has a tail node (the input block) with a larger
timing slack than the head node (the output block), then a zero cost
padding node is inserted in the edge e.
Algorithm 1 Crosstalk exclusive selection

/* Step 1: Select most critical nodes */
selected V ← ∅
conflicting V ← ∅
for v : most critical path do

selected V ← selected V ∪ {v}
conflicting V ← conflicting V ∪ v.neighbors

end for

/* Step 2: Mutually include critical nodes */
sorted TSV list ← sortTSV sBySlack()
for v : sorted TSV list do

if v /∈ conflicting V then
selected V ← selected V ∪ {v}
conflicting V ← conflicting V ∪ v.neighbors

end if
end for

/* Step 3: Add corresponding edges and output */
E ← {edge(u, v)|∃edge(u, v), ∀u, v ∈ selected V }
return graph(selected V,E)

As mentioned previously, crosstalk model has a neighboring effect
as shown in Section II-A. The most serious crosstalk effect is from
neighboring TSVs [5]–[8]. However, it is unlikely to incorporate such
comprehensive timing model into the cost function of the min-cut
algorithm, because whether the neighboring nodes are selected or not
or which type of buffer is selected is unknown during the cost function
computation. Thus, if neighboring TSVs are indeed selected at the
same time, it results in serious crosstalk effect and inaccurate cost
function of min-cut algorithm. To avoid such scenario, the crosstalk
exclusive selection step is proposed. It avoids neighboring TSVs being
selected by extracting sub-networks. In each iteration no neighboring
TSVs is in the network. Algorithm 1 gives the crosstalk exclusive
selection step. There are three steps in the algorithm. First, the nodes
on the most critical path are selected and recorded in selected V . By
doing so, the connectivity of primary input and output is guaranteed.
Next, nodes that are adjacent physically to the selected nodes are
conflict nodes which are recorded in conflict V . In Step 2, we want
to include as many nodes into the sub-network as possible. Thus,
unselected nodes are sorted by their timing slacks from small to large
(from more to less criticality). The most critical nodes that is not
physically adjacent to the current sub-network in selected V are
included. The iteration continues until sorted TSV list is empty.
Finally, the extracted graph is generated by adding the corresponding

edges as shown in Step 3.
Once a valid circuit is obtained, we can further reduce area by

the following two refinement techniques. First, down-sizing a TSV-
buffer may not only increase the delay on current TSV but also
reduce the delay of neighboring TSVs as shown in Figure 3. Thus,
if a critical path includes some neighboring TSVs, down-sizing one
of them may not worsen the delay as expected as the conventional
2D timing model without considering crosstalk effect. To deal with
this scenario, we down-size each TSV-buffer and check whether the
slack is still positive. If it is positive, then an over sized TSV-buffer
is found and can be down-sized to further reduce TSV-buffer area.
Second, heuristic algorithms can only find local optimal solutions. A
better solution may be found by injecting random permutation. Thus,
we up-size (down-size) each TSV-buffer and re-check the over sized
buffers till no more area can be reduced.

V. EXPERIMENTAL RESULTS

The proposed method is implemented in C/C++ language on Linux
environment under an AMD FX(tm)-8350 processor with 32GB me-
mory. The ILP solver GLPK is used to solve the ILP formulations. The
GSRC Hard-Block Benchmark and MCNC Hard-Block Benchmark
are used as benchmark circuits. Benchmark circuits are partitioned
into 2-tier (4-tier) by a 3D IC floorplan tool [9]. Table II shows the
benchmark circuits. In our experiments, technology parameters are
based on the 45nm Predictive Technology Model with supply voltage
1V. TSV technology parameters and formulation are referenced from
the previous work [5], [6], [10], [11]. The height, radius, and pitch
of a TSV are 80um, 6um, and 36um, respectively. The resistance,
capacitance, and inductance of TSV are 11.87mΩ, 54.85fF , and
41.1pH , respectively. The resistance and capacitance of substrate
are 79.28kΩ and 15.01fF . Based on the 45nm Open Cell Library,
three buffer sizes are used, i.e. 2x, 4x, and 8x, and their areas
are 1.064um2, 1.862um2, and 3.456um2, respectively. In addition,
wire resistance Rwire, ground capacitance Cgnd, and wire coupling
capacitance Ccoup are 152.77Ω, 2.26fF and 1.60fF , respectively,
and, from SPICE simulation, the unit wire delay is 1.1632ps/um.

TABLE II: Benchmarks
2-tier

name #blocks #TSVs
apte.2tier 9 51

xerox.2tier 10 122
hp.2tier 11 48

ami33.2tier 33 67
ami49.2tier 49 217

n10.2tier 10 55
n30.2tier 30 148
n50.2tier 50 223

n100.2tier 100 352
n200.2tier 200 694
n300.2tier 300 823

4-tier
name #blocks #TSVs

apte.4tier 9 151
xerox.4tier 10 262

hp.4tier 11 102
ami33.4tier 33 117
ami49.4tier 49 504

n10.4tier 10 128
n30.4tier 30 382
n50.4tier 50 535
n100.4tier 100 760
n200.4tier 200 1546
n300.4tier 300 1862

Compared to the crosstalk of wires in 2D ICs, which of TSVs
in 3D ICs has a more aggregate effect as shown in Figure 2. To
confirm the observation, comparison by ILP with and without using
the crosstalk model is performed. The experimental result shows that
ILP method without using the crosstalk model may underestimate the
circuit timing up to 50%. By the above analysis, it is clear that TSV
crosstalk effect should be explicitly considered. Thus, in the following
experiments, the crosstalk model is used in all methods.

Tables III shows the area comparisons between the Crosstalk-Aware
Heuristic (CAH) and the ILP methods. Due to lack of memory space,

404

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 29,2020 at 00:36:33 UTC from IEEE Xplore. Restrictions apply.

TABLE III: The crosstalk-aware heuristic (CAH) v.s. ILP

(um2) apte.2tier xerox.2tier hp.2tier ami33.2tier ami49.2tier n10.2tier n30.2tier n50.2tier n100.2tier Avg.
ILP 3.192 2.392 4.786 28.706 31.104 22.326 54.23 55.828 90.916 100.00%

CAH 3.192 2.392 4.786 28.706 32.702 22.326 55.824 62.206 94.112 102.56%

(um2) apte.4tier xerox.4tier hp.4tier ami33.4tier n10.4tier Avg.
ILP 16.75 23.13 36.678 38.28 80.548 100.00%

CAH 17.548 23.934 36.678 39.076 84.532 103.05%

TABLE IV: Heuristic methods

ami33.2tier ami49.2tier n30.2tier n50.2tier n100.2tier n200.2tier n300.2tier Avg.
Greedy [2] 31.894 95.688 62.202 69.38 115.634 252.004 173.858 132.88%

Separator sets [3] 31.894 39.88 59.014 66.988 117.234 231.27 177.85 118.21%
CAH 28.706 32.702 55.824 62.206 94.114 187.418 120.434 100.00%

ami33.4tier ami49.4tier n30.4tier n50.4tier n100.4tier n200.4tier n300.4tier Avg.
Greedy [2] 45.452 151.508 161.902 161.088 163.496 267.146 180.246 142.40%

Separator sets [3] 47.046 151.51 143.562 158.696 139.564 171.492 133.21 123.06%
CAH 39.076 147.526 117.258 145.94 97.31 132.42 109.294 100.00%

only 9 out of 11 (2-tier) and 5 out of 11 (4-tier) benchmarks have
successfully completed by the ILP solver. The results also show that
our proposed crosstalk-aware heuristic performs very effectively, on
average, using 2.56% (2-tier) and 3.05% (4-tier) more TSV-buffer area
compared to the ILP method.

Since there is no previous work focused on the TVS-buffer si-
zing to deal with 3D crosstalk effect, we implemented greedy [2]
and separator sets [3] methods as references. Tables IV shows the
comparisons between three heuristics, namely Greedy, separator sets,
and our CAH. We only report the cases with more than 30 blocks to
save space. The greedy method each time only selects a single buffer
to up-size without considering the global view, which often results
in an inferior solution. On the other hand, the separator sets method
shows a more stable performance over all benchmarks. Nevertheless,
all those two methods do not consider the crosstalk effect. As a result,
our proposed method has outperformed the greedy and separator sets
methods, on average, 32.88% and 18.21% (42.40% and 23.06%) in
TSV-buffer area reductions on 2-tier (4-tier) benchmark circuits.

VI. CONCLUSIONS

In this paper, we have observed that TSV driving buffer causes
large degradation in 3D designs than in 2D designs. Based on this
observation, TSV-buffer sizing methods are proposed for 3D ICs. We
presented an ILP method to find the global optimum solution and a
runtime efficient crosstalk-aware heuristic method. The results show
that the crosstalk-aware heuristic method, on average, only uses 2.56%
(3.05%) more TSV-buffer area compared to the ILP method on 2-
tier (4-tier) benchmark circuits. Also, on average, it achieves 32.88%
and 18.21% (42.40% and 23.06%) less TSV-buffer area compared
to the greedy [2] and separator sets [3] methods on 2-tier (4-tier)
benchmark circuits. From this study, we have learned that using the
conventional 2D buffer sizing methods to solve 3D IC problem will
result in excessive buffer area overheads. By taking into account 3D
IC crosstalk effects, our proposed methods can provide much effective
solutions.

REFERENCES

[1] A. C. Hsieh, T. Hwang, M. T. Chang, M. H. Tsai, C. M. Tseng, and
H. C. Li, “Tsv redundancy: Architecture and design issues in 3d ic,” in

2010 Design, Automation Test in Europe Conference Exhibition (DATE
2010), pp. 166–171, March 2010.

[2] I. Liu, A. Aziz, D. F. Wong, and H. Zhou, “An efficient buffer insertion
algorithm for large networks based on lagrangian relaxation,” in Procee-
dings of the IEEE International Conference On Computer Design, VLSI
in Computers and Processors, ICCD ’99, Austin, Texas, USA, October
10-13, 1999, pp. 210–215, IEEE Computer Society, 1999.

[3] Y. Tamiya, “Performance optimization using separator sets,” in Procee-
dings of the 1999 IEEE/ACM International Conference on Computer-
Aided Design, 1999, San Jose, California, USA, November 7-11, 1999
(J. K. White and E. Sentovich, eds.), pp. 191–194, IEEE Computer
Society, 1999.

[4] K. N. Tu, “Reliability challenges in 3d IC packaging technology,”
Microelectronics Reliability, vol. 51, no. 3, pp. 517–523, 2011.

[5] R. Weerasekera, M. Grange, D. Pamunuwa, H. Tenhunen, and L. Zheng,
“Compact modelling of through-silicon vias (tsvs) in three-dimensional
(3-D) integrated circuits,” in IEEE International Conference on 3D
System Integration, 3DIC 2009, San Francisco, California, USA, 28-30
September 2009, pp. 1–8, IEEE, 2009.

[6] C. Liu, T. Song, J. Cho, J. Kim, J. Kim, and S. K. Lim, “Full-chip tsv-to-
tsv coupling analysis and optimization in 3d IC,” in Proceedings of the
48th Design Automation Conference, DAC 2011, San Diego, California,
USA, June 5-10, 2011 (L. Stok, N. D. Dutt, and S. Hassoun, eds.),
pp. 783–788, ACM, 2011.

[7] R. Kumar and S. P. Khatri, “Crosstalk avoidance codes for 3d VLSI,”
in Design, Automation and Test in Europe, DATE 13, Grenoble, France,
March 18-22, 2013 (E. Macii, ed.), pp. 1673–1678, EDA Consortium
San Jose, CA, USA / ACM DL, 2013.

[8] T. Xiao and M. Marek-Sadowska, “Crosstalk reduction by transistor
sizing,” in Proceedings of the 1999 Conference on Asia South Pacific
Design Automation, Wanchai, Hong Kong, China, January 18-21, 1999,
pp. 137–140, IEEE Computer Society, 1999.

[9] M. Tsai, T. Wang, and T. T. Hwang, “Through-silicon via planning in 3-d
floorplanning,” IEEE Trans. VLSI Syst., vol. 19, no. 8, pp. 1448–1457,
2011.

[10] T. Song, C. Liu, Y. Peng, and S. K. Lim, “Full-chip multiple tsv-to-
tsv coupling extraction and optimization in 3d ics,” in The 50th Annual
Design Automation Conference 2013, DAC ’13, Austin, TX, USA, May
29 - June 07, 2013, pp. 180:1–180:7, ACM, 2013.

[11] J. Cho, E. Song, K. Yoon, J. S. Pak, J. Kim, W. Lee, T. Song, K. Kim,
J. Lee, H. Lee, K. Park, S. Yang, M. Suh, K. Byun, and J. Kim, “Modeling
and analysis of through-silicon via (tsv) noise coupling and suppression
using a guard ring,” IEEE Transactions on Components, Packaging and
Manufacturing Technology, vol. 1, pp. 220–233, Feb 2011.

405

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on May 29,2020 at 00:36:33 UTC from IEEE Xplore. Restrictions apply.

