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ABSTRACT

Multiprocessor system-on-chips (MPSoCs) in modern devices

have mostly adopted the non-uniform cache architecture (NUCA)

[1], which features varied physical distance from cores to data loca-

tions and, as a result, varied access latency. In the past, researchers

focused on minimizing the average access latency of the NUCA.

We found that dynamic latency is also a critical index of the perfor-

mance. A cache access pattern with long dynamic latency will result

in a significant cache performance degradation without considering

dynamic latency. We have also observed that a set of commonly

used neural network application kernels, including the neural net-

work fully-connected and convolutional layers, contains substantial

accessing patterns with long dynamic latency. This paper proposes

a hardware-friendly dynamic latency identification mechanism to

detect such patterns and a dynamic link-latency aware replacement

policy (DLRP) to improve cache performance based on the NUCA.

The proposed DLRP, on average, outperforms the least recently

used (LRU) policy by 53% with little hardware overhead. Moreover,

on average, our method achieves 45% and 24% more performance

improvement than the not recently used (NRU) policy and the static

re-reference interval prediction (SRRIP) policy normalized to LRU.
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1 INTRODUCTION

Nowadays, many processor devices, including servers, personal

computers, and embedded systems, have used the multiprocessor

system-on-chips (MPSoCs). In MPSoCs, since the working set size

has grown larger and larger, a shared cache has been adopted to uti-

lize the cache capacity fully. A shared cache architecture partitions

a large cache into several banks to avoid fixed worst-case access

latency, i.e., non-uniform cache architecture (NUCA) [1]. Figure 1

shows a 4 × 4 NUCA system with mesh topology in which each

circle represents a network-on-chip (NoC) router connecting the

network to a core, private cache, and shared cache bank. Take 𝑐𝑜𝑟𝑒3
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Figure 1: A 4 × 4 non-uniform cache architecture (NUCA) system.

in Figure 1 as an example; it has a short physical distance to cache

𝑏𝑎𝑛𝑘3, which means that it has a short link latency to access data
in cache 𝑏𝑎𝑛𝑘3, i.e., 0 link-latency. On the other hand, 𝑐𝑜𝑟𝑒3 has a
long physical distance to cache 𝑏𝑎𝑛𝑘12, which means that it has
an extended link latency to access data in cache 𝑏𝑎𝑛𝑘12, i.e., six
link-latency. The physical distance between core and data location

will be a parameter of the hit rate in a NUCA cache system.

C. Kim et al. first proposed the concept of NUCA [1]. Several chip

implications on NUCA also has been developed by both academic

communities and industrial companies, e.g., L-NUCA [2] and IBM

Power9. C. Kim et al. categorized the NUCA into static NUCA

(S-NUCA) and dynamic NUCA (D-NUCA) depending on if the

data mapping scheme to the cache banks is fixed or not [1]. The

S-NUCA has a fixed mapping scheme of the address space. The

goal of mapping is to have a short average access latency overall.

The simplicity of S-NUCA makes it easy for detailed analyses [3]

and, thus, commercial multiprocessors often adopt the S-NUCA [4].

The D-NUCA avoids long link distances by adopting complex data

migration, partition, or replication schemes [4–6]. Those D-NUCA

techniques can reduce the average cache access latency but come

with the price of high design complexity. In this paper, we will

focus on S-NUCA.

Many modern processors, such as Intel i5-750, utilize a large

cache to avoid misses. On the other hand, some embedded systems

adopt a smaller cache size with dedicated caching policies to avoid

cache misses [7]. In this paper, we will focus on the latter cache

architecture and study the cache replacement policy for its shared

L2 cache.

Many cache replacement policies have been proposed to improve

cache performance. Most of them are heuristic-driven policies, e.g.,

least recently used (LRU) policy and static re-reference interval pre-

diction (SRRIP) policy [8], developed by observations of program

execution behavior. Some schemes even combine multiple policies

to achieve better performances, e.g., dynamic re-reference interval

prediction (DRRIP) policy [8]. More recently, learning-based poli-

cies have been proposed [9], which can achieve higher hit rates

but come with more hardware area. In this paper, we will focus on

heuristic policies.

In the past, researchers focused onminimizing the average access

latency of the NUCA. We found that dynamic latency has a more

critical impact on the interference than the overall lumped average
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Figure 2: Allocation of 16 data blocks 𝑏1, 𝑏2, ..., 𝑏15.

latency in multi-application environments. A cache access pattern

with a large variety of dynamic latency will result in significant

cache performance degradation without considering the dynamic

latency. We have also observed that a set of commonly used neural

network application kernels, including the neural network fully-

connected and convolutional layers, contains substantial accessing

patterns with varying dynamic latency. In this paper, we propose

a hardware-friendly dynamic latency identification mechanism to

detect such patterns and a dynamic link-latency aware replacement

policy (DLRP) to improve cache performance based on the S-NUCA.

The paper is organized as follows. Section 2 gives motivation.

Section 3 discusses the dynamic latency. Section 4 and Section 5

presents our proposed method and experimental results. The final

section gives the concluding remarks.

2 MOTIVATION

The non-uniform cache architecture (NUCA) has variable access

latency related to the physical distance of the core and data location

[1]. A data block with long access latency may have interference

from other cores. Interference will cause the block being evicted by

other concurrently running applications before accessed. Ideally,

allocating all data near the processor could avoid this problem.

However, it is impossible to do so due to cache capacity. In the past,

most researchers focused on reducing the average network access

latency for the NUCA [1]. We found that the dynamic latency has

a more critical impact on the interference than the overall lumped

average latency in multi-application environments. To demonstrate

the observation, we use an example on a NUCA architecture with

two access patterns. We found that even with the same average

access latency, the cache hit rate may be different under multi-

application environments.

Assume that 𝑐𝑜𝑟𝑒0 issues cache requests for 16 data blocks𝑏0, 𝑏1, ..., 𝑏15.
Figure 2 shows location of the 𝑐𝑜𝑟𝑒0 and data blocks. In the figure,
data blocks 𝑏0, 𝑏4, 𝑏8, and 𝑏12 are in bank 0 with link latency 0,

data blocks 𝑏1, 𝑏5, 𝑏9, and 𝑏13 in bank 1 with link latency 1, data
blocks 𝑏2, 𝑏6, 𝑏10, and 𝑏14 in bank 2 with link latency 2, data blocks
𝑏3, 𝑏7, 𝑏11, and 𝑏15 in bank 3 with link latency 3. The first pattern,
𝑝𝑎𝑡𝑡𝑒𝑟𝑛1, is

(𝑏0 𝑏1 𝑏2 𝑏3)
𝑘0 (𝑏4 𝑏5 𝑏6 𝑏7)

𝑘1 (𝑏8 𝑏9 𝑏10 𝑏11)
𝑘2 (𝑏12 𝑏13 𝑏14 𝑏15)

𝑘3 ,

where 𝑘0 means the sub-pattern (𝑏0 𝑏1 𝑏2 𝑏3) is repeatedly accessed
𝑘0 times in 𝑝𝑒𝑟𝑖𝑜𝑑0, and, similarly, 𝑘1, 𝑘2, and 𝑘3 mean sub-patterns
(𝑏4 𝑏5 𝑏6 𝑏7), (𝑏8 𝑏9 𝑏10 𝑏11), and (𝑏12 𝑏13 𝑏14 𝑏15) are repeatedly
accessed 𝑘1, 𝑘2, and 𝑘3 times in 𝑝𝑒𝑟𝑖𝑜𝑑1, 𝑝𝑒𝑟𝑖𝑜𝑑2, and 𝑝𝑒𝑟𝑖𝑜𝑑3, re-
spectively. It is a bank-interleaved accessing pattern. The second

accessing pattern, 𝑝𝑎𝑡𝑡𝑒𝑟𝑛2, is with the same 16 data blocks but a
different order. The accessing pattern is

(𝑏0 𝑏4 𝑏8 𝑏12)
𝑘0 (𝑏1 𝑏5 𝑏9 𝑏13)

𝑘1 (𝑏2 𝑏6 𝑏10 𝑏14)
𝑘2 (𝑏3 𝑏7 𝑏11 𝑏15)

𝑘3 ,
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Figure 3: Distributed L2 cache performance degradation on access-
ing patterns of 𝑝𝑎𝑡𝑡𝑒𝑟𝑛1 and 𝑝𝑎𝑡𝑡𝑒𝑟𝑛2 under a multi-application en-
vironment.

where sub-patterns (𝑏0 𝑏4 𝑏8 𝑏12), (𝑏1 𝑏5 𝑏9 𝑏13), (𝑏2 𝑏6 𝑏10 𝑏14),
and (𝑏3 𝑏7 𝑏11 𝑏15) are repeatedly accessed𝑘0,𝑘1,𝑘2, and𝑘3 times in
𝑝𝑒𝑟𝑖𝑜𝑑0, 𝑝𝑒𝑟𝑖𝑜𝑑1, 𝑝𝑒𝑟𝑖𝑜𝑑2, and 𝑝𝑒𝑟𝑖𝑜𝑑3, respectively. In this pattern,
blocks in the same bank are accessed before moving to the next

bank.

We execute those two patterns with regular streaming applica-

tions as a multi-application environment. (The detail experimental

settings will be given in Section 5.) Let 𝑘0 = 𝑘1 = 𝑘2 = 𝑘3 for
both patterns. We collect and analyze L2 cache accesses only from

𝑝𝑎𝑡𝑡𝑒𝑟𝑛1 and 𝑝𝑎𝑡𝑡𝑒𝑟𝑛2 to understand the individual cache perfor-
mance. From our experiment, those two patterns have the same

average access latency, i.e., 14 (0+1+2+3) = 1.5. However, 𝑝𝑎𝑡𝑡𝑒𝑟𝑛1
has a 96.30% hit rate while 𝑝𝑎𝑡𝑡𝑒𝑟𝑛2 has only a 55.84% hit rate.

Thus, even though two patterns have the same average latency,

their cache hit rates are very different.

The difference in cache hit is explained as follows. Because all

16 data blocks are already in different cache banks and sets, the

interference is the only possible reason to cause the hit rate dif-

ference. 𝑝𝑎𝑡𝑡𝑒𝑟𝑛1 sequentially accesses each bank repeatedly. The
average link latency in all periods is the same. Consequently, the

interferences to all periods are similar and result in similar cache

hit rate in all periods. Figure 3 shows the cache hit rate of 𝑝𝑎𝑡𝑡𝑒𝑟𝑛1
in different periods, in which 𝑝𝑎𝑡𝑡𝑒𝑟𝑛1 (dark bars) shows a similar
cache hit rate regardless of the periods. On the other hand, 𝑝𝑎𝑡𝑡𝑒𝑟𝑛2
(light bars) keep access to the same bank in a period. The average

link latency of different periods is different. In some periods of

𝑝𝑎𝑡𝑡𝑒𝑟𝑛2, all accesses travel in a lengthy distance, e.g., 𝑝𝑒𝑟𝑖𝑜𝑑3. In
those periods, the average link latency of the period is longer than

the others. Consequently, those periods, e.g., 𝑝𝑒𝑟𝑖𝑜𝑑3, will suffer
more interferences and have degraded cache performance. Figure

3 shows that cache accesses of 𝑝𝑎𝑡𝑡𝑒𝑟𝑛2 in 𝑝𝑒𝑟𝑖𝑜𝑑𝑠0 and 𝑝𝑒𝑟𝑖𝑜𝑑𝑠1
have over 95% hit rate, while those in 𝑝𝑒𝑟𝑖𝑜𝑑2 and 𝑝𝑒𝑟𝑖𝑜𝑑3 have a
0% hit rate. Notice that 𝑝𝑎𝑡𝑡𝑒𝑟𝑛1 and 𝑝𝑎𝑡𝑡𝑒𝑟𝑛2 have the same overall
average latency. However, in terms of latency of periods, 𝑝𝑎𝑡𝑡𝑒𝑟𝑛1
has the same latency in all periods, while 𝑝𝑎𝑡𝑡𝑒𝑟𝑛2 has very long
latency in some periods. For those periods, more interference from

other core occurs. Thus, the cache hit rate of 𝑝𝑎𝑡𝑡𝑒𝑟𝑛2 degrades a
lot under the multi-application environment.

Recently, the artificial neural network (ANN) has shown excel-

lent results in various areas, and many real-world systems adopt

the ANN technique. We found that the commonly used kernels

of ANN, including 2D convolution and matrix multiplication [10],

features long dynamic latency, which will be discussed in detail

later.
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3 DYNAMIC LATENCY

As shown in the previous section, patterns with long dynamic

latency have hit rate degradation. This section will give a formal

definition of dynamic latency and a hardware identification mecha-

nism for implementation.

3.1 Long Dynamic Latency

The overall access latency (or static latency) is the average la-

tency of all accesses. The latency in a period is defined as dynamic

latency and formally defined as follows. Consider a sequence of

cache access, i.e., an access pattern. Consider a constant length of

time 𝑡 . Let period 𝑃𝑖 starts from time 𝑡𝑖−1 to 𝑡𝑖 of length 𝑡 , where
𝑖 ∈ 𝑁 +. Also, let 𝑛𝑖 be the number of accesses in the period 𝑃𝑖 ,

and accesses, 𝑎 𝑗 , with latency 𝑙𝑃𝑖𝑗 for 𝑗 from 1 to 𝑛𝑖 . Assuming

𝑛𝑖 > 0,∀𝑖 , the dynamic latency of period 𝑃𝑖 is 𝑑𝑙𝑖 = 1
𝑛𝑖

∑𝑛𝑖
𝑗=1 𝑙

𝑃𝑖
𝑗 .

If the time length 𝑡 covers the whole access pattern, the dynamic
latency equals the static average latency. The dynamic latency of

the periods forms a sequence of averages, i.e., 𝑑𝑙1, 𝑑𝑙2, 𝑑𝑙3, ... If all
periods have the same dynamic latency, the interference as well

as the hit rate will be the same. On the other hand, periods with

long dynamic latency may have more interference and lower hit

rate than others. Thus, we need dedicated mechanisms to solve the

long dynamic latency problem.

The next question is how to define a period 𝑃𝑖 with long dynamic
latency. We say that a dynamic latency is long if it is larger than

a threshold, i.e., 𝑃𝑖 : 𝑑𝑙𝑖 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. “Long or not too long” is a
relative concept. Thus, there are many ways to define the threshold

depending on the applications. The threshold can be the average

latency of all latency, i.e., static latency, or the average latency

from a core to all cache banks for a given architecture or any other

definition derived from the target architecture. For example, let

the threshold be the static latency. The static latency of 𝑝𝑎𝑡𝑡𝑒𝑟𝑛1
and 𝑝𝑎𝑡𝑡𝑒𝑟𝑛2 in Figure 3 are both 1.5. The dynamic latency of all
periods in 𝑝𝑎𝑡𝑡𝑒𝑟𝑛1 is stable and equal to the static latency 1.5. On
the other hand, the dynamic latency of 𝑝𝑒𝑟𝑖𝑜𝑑3 in 𝑝𝑎𝑡𝑡𝑒𝑟𝑛2 is up
to 3 and more significant than the static latency. Thus, 𝑝𝑒𝑟𝑖𝑜𝑑3 has
a long dynamic latency in 𝑝𝑎𝑡𝑡𝑒𝑟𝑛2.

3.2 Identification Mechanism

In the real implementation, it is hard to cut the time for peri-

ods during runtime. Instead of calculating the average latency of

periods, we propose to use the exponentially weighted moving

average (EWMA) to represent the dynamic latency due to hardware

efficiency. The exponentially weighted moving average (EWMA) is

updated when cache access is issued, as shown below.

𝐸𝑊𝑀𝐴𝑖+1 = 𝑙𝑖+1 × 𝑝 + 𝐸𝑊𝑀𝐴𝑖 × (1 − 𝑝), 0 < 𝑝 < 1,

where 𝑙𝑖+1 is the latency of current cache access. The parameter
𝑝 controls the averaging weights of latency. A smaller 𝑝 gives a
higher weight to historical values. A detector should give a higher

weight to historical values when more banks (or more possible

latencies) are in the cache architecture. In this paper, we set 𝑝 to
the reciprocal of the number of cache banks. For example, consider

a 4 × 4 MPSoC with the mesh topology. The value 𝑝 is 1/16.
The next question is to define the threshold. If the threshold is

too small (or too close to the average latency), the detector may

over-report the long dynamic latency. However, if the threshold is

too large, it may miss real long ones. In this paper, we will set the

threshold using the target architecture. Let 𝐿 be the average latency
from a core to all cache banks and 𝐷 the maximum latency. We

define the threshold as the mean of the average latency 𝐿 and the
maximum latency 𝐷 derived from our experiment, i.e., 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
𝐿+𝐷
2 . The reason behind this heuristic is that it maximizes the

margin to both ends. Thus, a dynamic latency, 𝐸𝑊𝑀𝐴𝑖 , is a long
dynamic latency if it is larger than the threshold, i.e., 𝐸𝑊𝑀𝐴𝑖 >
𝐿+𝐷
2 . For example, consider a 4× 4 MPSoC with the mesh topology.

The average latency, 𝐿, is three link-latency, and the maximum
latency, 𝐷 , is six link-latency. Thus, the period has long dynamic
latency if there exists EWMA larger than 4.5 link-latency.

A period with long dynamic latency suffers more interferences

than others. So, accesses in the period with long dynamic latency

may have a lower hit rate. A dedicated mechanism is needed to

solve this long dynamic latency problem.

4 CACHE REPLACEMENT POLICY

In this section, we will introduce a dynamic link-latency aware

replacement policy (DLRP) considering the dynamic latency based

on the widely used Static Re-Reference Interval Prediction (SRRIP)

replacement policy [8].

4.1 Review of the Replacement Policies

A. Jaleel et al. proposed the static re-reference interval prediction

(SRRIP) replacement policy [8]. The SRRIP intelligently tries to

avoid the scanning and thrashing access patterns by separating

the accesses into two categories, namely accesses with the near-

immediate re-reference interval and the long re-reference interval.

The SRRIP assigns them to different priority correspondingly. To

do so, it uses multiple replacement policy bits (RPB) to indicate

each block's priority. Also, the RPB value will be updated when the

cache is in use. Consider an SRRIP policy with𝑚-bit RPB, i.e., an
𝑚-bit SRRIP policy. On a cache hit, the SRRIP will predict this cache
block to have a near-immediate re-reference interval and set it to the

highest priority, i.e., 0. On a cache miss, a cache block is fetched

and stored. The SRRIP will predict this cache block to have a long

re-reference interval and set the cache block to a low priority, i.e.,

2𝑚 − 2. On eviction, the SRRIP will search for a cache block with

the lowest RPB value, i.e., 2𝑚 − 1, as the victim. If there is no cache

block with the lowest RPB value, the SRRIP will update RPBs of all

cache blocks by adding one and then search for a victim again. The

SRRIP policy repeats the above steps until it finds a victim cache

block. Take𝑚 = 3 (3-bit SRRIP policy) as an example. There are

eight priority levels ∈ {0...7}. Priority 0 denotes the highest priority
indicating the most recently used blocks, and priority 7 denotes the

lowest priority indicating the least recently used block. On a cache

hit, SRRIP will set the cache block to priority 0. On the other hand,

on a cache miss, SRRIP will set the cache block to priority 6. On an

eviction, SRRIP always searches for the cache block with priority 7.

If there is no cache block with priority 7, SRRIP will decrease the

priorities of all blocks by adding one and then search for a victim

again. The SRRIP does not consider the latency, which may result

in performance degradation.
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Table 1: Replacement policy bit (RPB) priority.
NRU (1-bit) SRRIP (m-bit) DLRP (m-bit)

Hit 0 0 0
Miss 0 2𝑚 − 2 2𝑚 − 2 − 𝑅𝑅𝐼_𝑙𝑎𝑡

4.2 Link-latency Aware Replacement Policy

A new link-latency aware replacement policy is invoked when

a long dynamic latency is detected using the method proposed in

Section 3.2. The new link-latency aware replacement policy based

on SRRIP is designed as follows.

First, we define that the re-reference interval (RRI) of cache ac-

cess to a data block 𝑏𝑖 is the number of data blocks accessed before
re-accessing the data block 𝑏𝑖 in the same cache set. Table 1 sum-
marizes the replacement policy bit (RPB) values for a currently

accessed data block. The not-recently used (NRU) policy does not

differentiate hit or miss access and gives the highest priority to all

accesses. On the other hand, the SRRIP utilizes multiple bits for

RPB and gives the missing access a relatively low priority. How-

ever, SRRIP policy does not consider latency, which may introduce

additional re-reference interval (RRI). In this paper, we propose a

link-latency aware replacement policy that considers interferences

by giving a higher priority to the miss accesses using the 𝑅𝑅𝐼_𝑙𝑎𝑡
parameter.

We define the parameter 𝑅𝑅𝐼_𝑙𝑎𝑡 as the difference of RRI that
is related to current latency. The following equation captures the

𝑅𝑅𝐼_𝑙𝑎𝑡 , where the first term is the interference from other appli-

cations, and the second term estimates the portion of delay caused

by the link latency.

𝑅𝑅𝐼_𝑙𝑎𝑡 = 𝑖𝑛𝑡𝑒𝑟_𝑅𝑅𝐼 ×
𝑙𝑎𝑡𝑒𝑛𝑐𝑦 × (𝑖𝑛𝑛𝑒𝑟_𝑅𝑅𝐼 + 1) × 𝑁_𝑠𝑒𝑡𝑠

𝑟𝑒𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑐𝑦𝑐𝑙𝑒𝑠
(1)

The 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 denotes the link latency of the current access. The

𝑖𝑛𝑡𝑒𝑟_𝑅𝑅𝐼 is the re-reference intervals that are from other applica-

tions accessing the same cache bank, 𝑟𝑒𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑐𝑦𝑐𝑙𝑒𝑠 the aver-
age elapsed cycles between two accesses to the same data block,

𝑖𝑛𝑛𝑒𝑟_𝑅𝑅𝐼 the re-reference interval that is from the same appli-

cation accessing the same cache bank, and 𝑁_𝑠𝑒𝑡𝑠 the number
of cache sets in a bank. Notice that the sum of 𝑖𝑛𝑡𝑒𝑟_𝑅𝑅𝐼 and
𝑖𝑛𝑛𝑒𝑟_𝑅𝑅𝐼 is the average reference interval, 𝑅𝑅𝐼 , i.e., 𝑖𝑛𝑡𝑒𝑟_𝑅𝑅𝐼 +
𝑖𝑛𝑛𝑒𝑟_𝑅𝑅𝐼 = 𝑅𝑅𝐼 . The𝑁_𝑠𝑒𝑡𝑠 is dependent upon the target memory
architecture and, thus, a constant value. Furthermore, the 𝑖𝑛𝑡𝑒𝑟_𝑅𝑅𝐼 ,
𝑟𝑒𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑐𝑦𝑐𝑙𝑒𝑠 , and 𝑖𝑛𝑛𝑒𝑟_𝑅𝑅𝐼 are application dependent. No-
tice that the number of bits of the 𝑅𝑅𝐼_𝑙𝑎𝑡 depends on the number
of priority levels (Table 1). For example, a 4-bit 𝑅𝑅𝐼_𝑙𝑎𝑡 is enough
for a 16-way cache system, and 8-bit multiplication/division opera-

tions are enough to estimate the 𝑅𝑅𝐼_𝑙𝑎𝑡 value, which is relatively
small compared to the cache tag array.

A hardware monitor is designed to collect the application char-

acteristics on-the-fly, including the 𝑖𝑛𝑡𝑒𝑟_𝑅𝑅𝐼 , 𝑟𝑒𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑐𝑦𝑐𝑙𝑒𝑠 ,
and 𝑖𝑛𝑛𝑒𝑟_𝑅𝑅𝐼 . An inter_RRI counter records the interval from

other applications between two accesses to the target set, and an

inner_RRI counter records the interval between two accesses to the

target set from the same application. Also, the 𝑟𝑒𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑐𝑦𝑐𝑙𝑒𝑠 is
the cycle time difference between two accesses of the target block.

Figure 4 shows additional hardware in red blocks on a 16-core

mesh system, in which each core has a separate monitor in each

cache bank. The hardware monitors sample addresses, i.e., the

monitoring addresses, representing the accessing pattern of the core.

Core

Mon. 0
Mon. 1

…
Mon. 15

Cache bank

Monitoring address
tag index

tag0 tag1 tag15…
Interval addresses

Inner_RRI counter

Inter_RRI counter

Core

Cache bank

Network-on-Chip (NoC)

Additional hardware Additional hardware

… …

… …

Monitor

Timestamp

v v v
Mon. 0
Mon. 1

…
Mon. 15

v

Figure 4: Proposed hardware monitors.
Cache access from core � to address �

in monitor of core �

� == �

Report inner_RRI counter, 
inter_RRI counter, and timestamp

Do nothing

Update inner_RRI counter 
and interval address

Update inter_RRI counter 
and interval address

Yes

Yes

Yes

No

No

No

� == monitoring address

� ∈ interval addresses

Figure 5: Control flow chart of hardware monitor.

The hardware also records the interval addresses for the monitoring

address. The inner_RRI and the inter_RRI counters indicate current

counting numbers of 𝑖𝑛𝑛𝑒𝑟_𝑅𝑅𝐼 and 𝑖𝑛𝑡𝑒𝑟_𝑅𝑅𝐼 . Notice that the sum
of inner_RRI and inter_RRI counters equals the number of valid

interval addresses. Lastly, the timestamp records the first accessing

time of the monitoring address.

When a core 𝑖 issues a cache accessing request, the network-on-
chop (NoC) will also pass the request information to each monitor

of core 𝑗 . Figure 5 shows the control flow chart for a cache access

from core 𝑖 to address 𝑎 in the monitor of core 𝑗 . If 𝑎 is equal to the
monitoring address, it is a re-access to themonitoring address. Then,

the monitor reports the inner_RRI counter, inter_RRI counter, and

timestamp as the core characteristics. Otherwise, if the address, 𝑎,
is in interval addresses, it does nothing. If not, it will check whether

𝑖 is equal to 𝑗 . if 𝑖 = 𝑗 , then it increases the inner_RRI counter by
one and stores the address, 𝑎, into interval addresses. Otherwise, it
increases the inter_RRI counter by one and stores the address, 𝑎,
into interval addresses. Notice that the distribution of the requests

will cause additional network loading.

In our design, all of the monitors are set to invalid initially. Also,

the monitor is set to invalid when context switching. It starts moni-

toring and reporting the characteristic when long dynamic latency

is detected. When turning on, the monitor of core 𝑖 will monitor
the first accessing request from the core 𝑖 and record the current
time into the timestamp. Later on, after the second time access

to the monitoring address, the inner_RRI and inter_RRI counters

are reported as the 𝑖𝑛𝑛𝑒𝑟_𝑅𝑅𝐼 and 𝑖𝑛𝑡𝑒𝑟_𝑅𝑅𝐼 of the core. Also, the
𝑟𝑒𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑐𝑦𝑐𝑙𝑒𝑠 of the core is the subtraction of the current cy-
cle time and the timestamp. After that, the monitor invalidates the

addresses and resets the counters to 0. Then, the monitor will wait

for the next request from the core 𝑖 to monitor.
Figure 6 shows a top-level replacement policy bit (RPB) selection

of our proposed dynamic-link-latency-aware replacement policy

(DLRP). If the access has no long dynamic latency, then the policy

behaves the same as the SRRIP, which sets RPB value to 0 to the hit

blocks and 2𝑚 − 2 to the miss blocks. In this case, the 𝑅𝑅𝐼_𝑙𝑎𝑡 is a
don’t-care signal, and those related hardware monitors are power-

gated to save energy. Otherwise, the access has a long dynamic

latency. The multiplexer will select the 2𝑚 − 2−𝑅𝑅𝐼_𝑙𝑎𝑡 as the RPB
value to the miss blocks.
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Figure 6: The selection of replacement policy bits (RPB).

4.3 Hardware Overheads

Our proposed replacement policy requires additional monitors

to obtain the characteristics of applications. We calculate the num-

ber of storage buffers of monitors to estimate the hardware area

overhead. Each monitor for a core in a cache bank has a monitoring

address, several interval addresses, two positive integer counters,

and a timestamp. The monitoring address is a full-sized cache ad-

dress without offset bits. Also, the interval addresses only need to

record the tags to present the addresses. Assume that the number

of interval addresses is 16. In this case, 4-bit counters are adequate.

We also assume that the timestamp uses a general 64-bit integer,

and the system uses an address of 64-bit wide with 6-bit offset, 9-bit

indexing, and 49-bit tag. It will be approximately 120 bytes for each

monitor, including the valid bits. In our design, each cache bank

has a separate monitor for each core. Thus, there are 𝑁 2 monitors

for an 𝑁 -core system. Assuming a system consists of 16-core and

320kB cache with 16 distributed cache banks. The overall additional

hardware area will be 16×16×120𝐵 = 30𝑘𝐵. By the cache simulator
Cacti6.5, it is 4.10% additional overhead to the cache tag hardware

area and 0.07% to the whole cache hardware area. Consider a system

with 64-core and 2.5mB cache as another example. The simulation

result from the Cacti6.5 shows 12.00% additional overhead to the

cache tag hardware area and only 0.49% to the whole cache hard-

ware area. Overall, we consider that the hardware area overhead of

our design is relatively small.

One may suspect that it may require additional timing overheads

due to the calculation of 𝑅𝑅𝐼_𝑙𝑎𝑡 . The DLRP calculates the priority
value only when there is a miss and performs in parallel with

the data fetching from the next level of memory. As a result, the

implementation of our proposed policy requires no additional delay

overhead.

5 EXPERIMENTAL RESULTS

We use the Gem5 system simulator and the ruby system to

evaluate our method on an in-ordered 16-core, 1Ghz system with

x86 64 ISA. The system has a 4 × 4 mesh network-on-chip (NoC)

using the MOESI coherence protocol with link-latency eight cycles.

Furthermore, processors have private 4kB L1 caches with three

cycles and a shared distributed 320kB L2 cache with 15 cycles.

Furthermore, the DRAM latency is 500 cycles.

Our method is orthogonal to other heuristic policies and, thus,

can be integrated with any other policies, e.g., DRRIP, to achieve

better performance. In this experiment, we only select well-known

and fundamental heuristic policies for comparisons, such as LRU,

NRU, and SRRIP.

Ten benchmarking kernels selected from various areas, including

the critical kernels of artificial neural networks (ANNs), are listed in

Table 2 as well as their descriptions and L1miss per kilo-instructions

(MPKI), which indicates how often the kernel accesses the L2 cache.

Table 2: Benchmarking kernels.
Name Description L1 MPKI

𝑠𝑡𝑟𝑐𝑝𝑦 String copy in the standard library 3.47

𝑟𝑎𝑛𝑑𝑜𝑚 Random memory access 55.56

𝑚𝑐𝑜 Matrix multiplication chain order 0.00

ℎ𝑤𝑑𝑒𝑐 Haar wavelet image decompression 18.46

𝑟𝑙𝑐ℎ𝑘𝑦 Right-looking cholesky factorization 36.39

2𝐷𝐶𝑜𝑛𝑣 Two-dimensional discrete convolution 79.91

𝑙𝑙𝑐ℎ𝑘𝑦 Left-looking cholesky factorization 3.17

ℎ𝑤𝑐𝑜𝑚 Haar wavelet image compression 18.46

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 Matrix multiplication 63.01

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 Matrix transposition 81.56
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Figure 7: Cache performance degrades on kernels with long dy-

namic latency under a multi-application environment.

We conduct the first experiment on a controlled workload, where

one core executes a benchmarking kernel, and other cores execute

stream applications in parallel to emulate a multi-application envi-

ronment. Table 3 shows the experimental results. Unsurprisingly,

𝑠𝑡𝑟𝑐𝑝𝑦 and 𝑟𝑎𝑛𝑑𝑜𝑚 have no long dynamic latency and do not bene-

fit from our proposed method (DLRP). Also, the𝑚𝑐𝑜 is compute-
intensive (L1 MPKI=0.00) and does not benefit from DLRP. In those

three kernels, no large exponentially weighted moving average

(EWMA) exists, indicating no long dynamic latency. The ℎ𝑤𝑑𝑒𝑐
and 𝑟𝑙𝑐ℎ𝑘𝑦 also have no large EWMA, and the DLRP produces the

same performance as the SRRIP. On the other hand, the 𝑙𝑙𝑐ℎ𝑘𝑦 has
large EWMA and 3% performance improvements compared to the

LRU policy. Furthermore, the ℎ𝑤𝑐𝑜𝑚, 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 , and the ANN re-

lated kernels 2𝐷𝐶𝑜𝑣𝑛 and𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 show significant performance

improvements, 38%, 78%, 73%, and 75%, respectively, due to more

miss blocks being promoted by DLRP (>15%) as compared to 𝑙𝑙𝑐ℎ𝑘𝑦
(2%). Overall, the DLRP, on average, outperforms LRU by 53% over

the five kernels with long dynamic latency. Furthermore, DLRP, on

average, achieves 45% and 24% more performance improvement

compared to NRU and SRRIP in terms of instructions per cycle

(IPC) normalized to LRU. Our method achieves 13%, 11%, and 7%

higher L2 hit rates than LRU, NRU, and SRRIP over the five kernels

with long dynamic latency. The performance of other cores running

stream applications remains identical.

To understand if the increase of hit rate is indeed from the iden-

tification of long dynamic latency, we classify accesses by their link

latency and their hit rate. In this experiment, we collect and ana-

lyze the cache accesses of 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 , as shown in Figure 7. Figure 7
shows the hit rates of SRRIP (without considering long dynamic

latency) and DLRP (considering long dynamic latency). The 𝑥-axis
is the accesses with different dynamic latency, and the 𝑦-axis the
hit rate of the accesses. The figure shows that the performance

of SRRIP is degraded for the accesses with long dynamic latency,

while DLRP remains the same cache hit rate for all accesses.

We conduct the third experiment to evaluate a more realistic

workload, consisting of kernels with/without long dynamic latency
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Table 3: Experimental results.

Kernel
#large
EWMA

With long
dynamic latency?

IPC
(normalized to LRU)

#promoted misses
by DLRP (%)

L2 hit rate

NRU SRRIP DLRP LRU NRU SRRIP DLRP

𝑠𝑡𝑟𝑐𝑝𝑦 0 No 1.00 1.00 1.00 - 0.00 0.00 0.00 0.00

𝑟𝑎𝑛𝑑𝑜𝑚 0 No 1.00 1.00 1.00 - 0.00 0.00 0.00 0.00

𝑚𝑐𝑜 0 No 1.00 1.00 1.00 - 0.00 0.00 0.00 0.00

ℎ𝑤𝑑𝑒𝑐 0 No 1.00 1.00 1.00 - 0.21 0.20 0.21 0.21

𝑟𝑙𝑐ℎ𝑘𝑦 0 No 0.98 0.99 0.99 - 0.12 0.12 0.12 0.12

Avg. 0 No
1.00 1.00 1.00

-
0.07 0.06 0.07 0.07

(-0.01) (-0.00) (-0.00) (-0.00) (-0.01) (-0.00) (-0.00)

𝑙𝑙𝑐ℎ𝑘𝑦 7297 Yes 1.00 1.00 1.03 0.02 0.01 0.01 0.01 0.04

2𝐷𝐶𝑜𝑛𝑣 55034 Yes 1.08 1.15 1.73 0.31 0.08 0.12 0.15 0.34

ℎ𝑤𝑐𝑜𝑚 62988 Yes 1.00 1.32 1.38 0.16 0.03 0.03 0.07 0.07

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 144544 Yes 1.17 1.48 1.75 0.17 0.04 0.08 0.15 0.21

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 151958 Yes 1.16 1.51 1.78 0.16 0.04 0.08 0.15 0.20

Avg. >0 Yes
1.08 1.29 1.53

0.16
0.04 0.06 0.11 0.17

(-0.45) (-0.24) (-0.00) (-0.13) (-0.11) (-0.07) (-0.00)

Table 4: The average IPC of mixed kernels with long dynamic

latency (DL), kernels without long dynamic latency (NDL), and

compute-intensive (CI) kernels (normalized to LRU).

Workload
Memory-intensive Compute-

With long dynamic No long dynamic intensive (CI)
latency (DL) latency (NDL) (MPKI=0.00)

1DL, 3NDL, 12CI 1.05 1.00 1.00

1DL, 4NDL, 11CI 1.14 1.00 1.00

1DL, 5NDL, 10CI 1.29 0.99 1.00

1DL, 6NDL, 9CI 1.37 0.99 1.00

1DL, 7NDL, 8CI 1.53 0.99 1.00

1DL, 8NDL, 7CI 1.54 0.99 1.00

and compute-intensive kernels. In this experiment, one workload

consists of both memory-intensive and compute-intensive kernels.

The memory-intensive kernels include kernels with/without long

dynamic latency. In the experiment, the kernel with long dynamic

latency (DL) is a single 2𝐷𝐶𝑜𝑛𝑣 kernel and executed with various
numbers of kernels without dynamic latency (NDL) and compute-

intensive (CI) kernels. Table 4 shows the average IPC normalized to

LRU. For example, the first workload consists of a kernel with long

dynamic latency (2𝐷𝐶𝑜𝑛𝑣) executed on one core, kernels without
long dynamic latency (𝑟𝑎𝑛𝑑𝑜𝑚, 𝑠𝑡𝑟𝑐𝑝𝑦, and 𝑟𝑙𝑐ℎ𝑘𝑦) executed on
three cores, and compute-intensive kernels (𝑚𝑐𝑜) executed on the
other 12 cores. From the table, the IPC of the kernel with long

dynamic latency has 5% to 54% improvements compared to LRU.

Meanwhile, the average IPC degradation on the kernels without

long dynamic latency remains below 1%. Furthermore, all compute-

intensive kernels remain the same IPC. Overall, our proposed DLRP

can achieve better performance on the kernel with long dynamic

latency with a relatively small performance impact on others in our

experimental workloads.

In our proposed DLRP, each application only has a single moni-

tor that monitors a small subset of random accesses to represent

the application behavior. Adding more monitors may attain more

application behavior. We conducted an experimental comparison

on a single monitor and 1000 monitors. The results show that DLRP

with more monitors will not further improve the performance com-

pared to the one with a single monitor. Thus, a single monitor is

adequate to capture the application behavior, which is very efficient

in terms of hardware area and energy overheads.

6 CONCLUSIONS

In this paper, we have focused on the multiprocessor system-on-

chips (MPSoCs) with a non-uniform shared cache (NUCA). We have

discovered that dynamic latency is an essential index to cache hit

rate. For the patterns with long dynamic latency may result in per-

formance degradation under multi-application environments. We

propose an efficient online hardware mechanism to identify such

patterns. Also, hardware and energy-efficient cache replacement

policy with an online hardware monitor obtaining application be-

haviors, the dynamic link-latency aware replacement policy (DLRP),

has been developed to target the dynamic latency. The experimen-

tal results show that the DLRP, on average, outperforms LRU by

53% on a set of benchmarking kernels with long dynamic latency.

Furthermore, our method, on average, achieves 45% and 24% more

performance improvement compared to NRU and SRRIP replace-

ment policy normalized to LRU. The results have demonstrated that

our method is beneficial and effective for applications containing

substantial kernels with long dynamic latency, including the ker-

nels of fully-connected and convolutional layers, in the artificial

neural network (ANN).
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